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The transport of a scalar quantity in a disordered medium is a commdalepnan science and engi-
neering. To understand the interplay between deterministic transpashgs and stochasticity of the
underlying microstructure, we analyse a simple model for unidirectiadakction-diffusion-reaction
over a random array of point sinks. The homogenized concentraistribdtion over a periodic array
provides a leading-order approximation for a wide range of ergodimatry random sink distributions
of comparable mean density. However the fluctuations about this statedisprongly on the statistical
properties of the array and the relative sizes of the scale-separatemei@r (the ratio of mean inter-sink
distance to domain size) and the physical parameters (expressedesitiniess €clet and Damahler
numbers). Using a combination of Monte Carlo simulation and asymptotiysasawe characterise
the spatial variability and correlation statistics of the transported quantitytzowd sow the underlying
regularity of the microstructure, particularly at love&let numbers, ensures a much smaller fluctuation
magnitude than in the case of a uniformly random microstructure. Evemsimk locations are almost
uncorrelated to each other, we find that the concentration fluctuatioredaterstrongly over lengthscales
comparable to the whole domain. Thus boundary conditions can detetineirtlistributions of both the
averaged leading-order distribution of the transported quantity and itsiditions.

Keywords advection-diffusion-reaction; stochastic homogenization; randodiume parameter regime

1. Introduction

The theory of homogenization is a combination of multiptedss analysis and averaging techniques that
has been successfully applied to a variety of physical,re®ging and biomedical problems since its de-
velopment in the 1970's bBabwska (1976, Bakhvalov(1974), Berdichevskii(1975, Keller (1977, Pa-
panicolaou(1979, Sanchez-Palencigl980 and others. Applications of homogenization are as diverse
as standard equations of mathematical physics with raisityllating coefficients (on a domain with pe-
riodic microstructure) Bakhvalov & Panasenkd 989, wave-propagation in fibre-reinforced poroelastic
media Parnell & Abrahams2008 and the molecular strain energy of DNMé&ddocks 2004).

The homogenization method provides a convenient analytich for obtaining the effective macro-
scopic description of underlying phenomena at fine scalesrépresentative periodic structural unit at
these scales can be devised, or if the assumptions of statisbomogeneity and ergodicity can be applied
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to the systemTorquatq 2006. The original motivation, and most common applicationthef homogeniza-
tion method is to the physics of composite materi&g&snchez-Palencjd980; here, much effort has been
put into problems of convergence of differential operatord functionals in the theory of ordinary and par-
tial differential equations with rapidly oscillating cdiefents Bakhvalov & Panasenkd 989 Bensoussan
et al, 1978 Zhikov et al,, 1979. However, recent interest in biomechanical applicatioas unveiled new
opportunities for averaging and homogenization approa¢@bapmanret al, 2008 Chernyavskyet al,,
20112, Shipley & Chapman201Q Woodet al., 2002).

Homogenization techniques for media with periodic mianesture were pioneered bylaxwell (1873
andRayleigh(1892. Since then, the effective properties of a medium with eesjo heat or mass transport
have been derived for a variety of transport regimes and umediompositions Batchelor & O’Brien
1977 Keller, 1963 Sangani & Acrivos 1983. These are typically parametrised by acket number Pe
(representing the relative strength of advection to diffiny a Damkhler number Da (representing the
relative rate of a reaction to diffusion) and a scale-sefmrgparametee < 1 (the ratio of microscopic
to macroscopic lengthscales). Sangani, Acrivos and doeasitstudied by a hybrid numerical-analytical
approach the effect of flow at low PAgrivos et al,, 1980 Sangani & Acrivos1982 and high Pe\(vang
& Sanganj 1997 on heat transport at fixed heat-exchange rate or fixed teahperof heated spheres and
cylinders arranged in periodic or random arragsiriault & Adler (1995 classified parameter regimes for
two-dimensional advective-diffusive transport withoe&ction (Da= 0). Mauri (1991) considered several
different scalings of Pe and Da for first-order irreversitdaction kinetics in a periodic porous medium
and obtained the corresponding effective equations. Mecently, Mikeli€ et al. (2006 and Allaire &
Raphae(2007) provided rigorous estimates for convergence of the homisge solutions to an advection-
diffusion-reaction problem at large macroscopic Pe andfgure1(a) illustrates how these authors have
contributed descriptions of different asymptotic transpegimes across (P®a) parameter space, in the
context of one-dimensional transport via advection anfiigiibn past a periodic array of sinks with zeroth-
order kinetics. This Figure also illustrates typical distiasymptotic regimes in parameter space within
which different physical effects dominate (derived@mernyavskyet al, 2011, hereafter referred to as
CLDJ).

The stochastic homogenization metho®ehsoussaat al. (1978 was proposed almost simultaneously
with the development of the theory of homogenization forigmic structures. In the case of statistically
homogeneous and ergodic microstructure, virtually alultssfor periodic porous media are directly ap-
plicable andvice versaTorquatqg 2006. The effective advective-diffusive transport in randoowflfields
was shown to have many similarities with transport in a pdwelocity field McCarty & Horsthemke
1988 McLaughlinet al, 1989. In parallel with the homogenization technique, sevetaistical Hashin
& Shtrikman 1962 Prager 1963 and analytical Bergman 198Q Milton, 1981) methods for identifying
rigorous bounds of effective material properties have mmreloped. In particular, thepoint correlation
(probability) function formalism of Torquato and co-autbdas assisted calculation of geometry-specific
bounds Torquatq 1997). Using the framework of generalised Taylor dispersi®hapiro & Brenne(1988
calculated effective parameters of an advection-diffasimaction equation for first-order kinetics by study-
ing the properties of statistical averages (moments) ofl@eséBrownian particle” introduced into a spa-
tially periodic porous medium. The volume averaging metbgd/Nhitaker and othersWhitaker, 1967,
Zolotarev & Radushkevichl968 was recently applied to find effective nonlinear Michaelienten-type
reaction-diffusion equations in biofilm¥Joodet al, 2002. Meanwhile recent advances in stochastic ge-
ometry and meso-scale homogenization have allowed thdafexent of time-dependent growth models
(for applications such as a growing network of blood vegselbhiere global scalar fields of the medium
affect the geometry of the microstructure and vice versayiding a feedback loop across different length-
scales Capassp2009; for more detailed recent reviews of homogenization ameoéffective description
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Figure 1. (a) A schematic representation(Bf Da)-parameter ranges considered in previous studies
of homogenized advection-diffusion-reaction problemarafeter ranges addressed by previous authors
(shaded grey regions and grey circles) have been “projectedhe (Pe Da)-parameter space derived in
CLDJ for one-dimensional transport past a periodic arragioks with constant uptake. (Daidider and
Péclet numbers are defined on the local inter-sink distar@elid lines demarcate six distinct asymptotic

regimes: uptake-dominated flJUa, U3), diffusion-dominated (D) and advection-dominated (&).APe-
ripheral shaded areas represent the limits-P@ (left), Pe— o (right), and Da— 0 (bottom). (b) Leading-
order homogenized solutios? for representative points (1)-(4) in the parameter spaee<(R, €2, €2, 1
and Da= €96 2¢2, 3 £14 respectively) and the exact soluti@or the point (5) (Pe= ¢~ 1, Da= 1), il-
lustrating a “staircase” structure, are plotted acrossgatial domain 6< X < 1, computed witle = 0.05;
circles show the locations of the 19 sinks (CLDJ).

techniques, se€hernyavsky2011), Parnell & Abraham$2012).

Key features of the transported scalar field over a perioicidution of sinks are summarised in Fig-
ure 1 (adapted from CLDJ). Diffusive, advective and uptake fluxe®ss the whole domain balance when
Da= O(g?), Pe= O(¢), defining an organising centre {Pe Da)-parameter space (see Fig). A second
organising centre at Re O(1), Da= O(¢) characterises the balance of advection and diffusion antae
sink scale, while advective and uptake fluxes remain bathatthe scale of entire domain. Radiating from
the organising centres are the lines that bound asymptotitaths; within each domain a single physical
effect typically dominates at the macroscopic lengthscalitnough additional effects become important
within internal boundary layers at smaller scales (astitated in Fig.1b). Asymptotic analysis for other
types of reaction kinetics (see Appendi)indicates that the layout of the asymptotic domainge Da)-
space (Figla) remains broadly similar, although the specific functidoan of the solution profile differs
(cf. Figs1(b) andA.1). As indicated above, the map of asymptotic domains appls&swhen sinks are dis-
tributed randomly (CLDJ). However the parameter rangebiwitvhich the homogenization approximation
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is valid are sensitive to sink distributions, as we discusther below.

In transport problems involving stochastic geometriesemthe problem is posed in terms of statisti-
cal distributions, the classical homogenized solutiorviges information regarding the mean properties of
a transported field but not the statistical properties offthetuations about the mean that will arise in a
particular realisation of the problem. The fluctuations ianportant in understanding the accuracy of the
homogenized solution across parameter space as well ag tfemactical significance in certain applica-
tions. Here, we estimate the properties of fluctuations énabntext of the simple problem illustrated in
Figurel(b), which was motivated by maternal blood flow in the humatphta (CLDJ), involving transport
via advection and diffusion past a distribution of sinksentihe sink locations have prescribed statistical
properties § 2). In the first instance, numerical Monte-Carlo simulatiorakles us to compute the prop-
erties of fluctuations directly; the fluctuations show strikmultiscale behaviour, such that the covariance
varies smoothly over macroscopic lengthscales under thesimce of boundary conditions. We analyse this
behaviour § 3) by exploiting the linearity of the governing PDE, which éfes the solute concentration
field to be expressed as a functional of the sink locatiortedabh this functional is, for most parameter
regimes, nonlinear). Then, for a given statistical sinkrdistion, we approximate the statistical properties
of the fluctuations by exploiting the multiscale nature @ groblem. Our non-standard approach was in-
troduced in CLDJ for the case of linear functionals; here wkerd it into the nonlinear regime in some
special cases, enabling us to provide convergence estiraatess parameter spagelj.

2. Problem statement

Consider a one-dimensional arraydfdentical point sinks of constant strengjf The size of the domain
is L, andl is the distance between two adjacent sinks (L, L = (N+ 1)l). Solute is carried past the
sinks by a unidirectional flow fieldy, assumed to be uniform over the domain (as if driven by a eost
pressure drop according to Darcy’s law); the solute cormeéinh Cy at the inlet & = 0) is prescribed,
and the concentration at the outlet & L) is set to be zero. The solute diffuses between the sinks with
diffusivity D. The concentration fiel@*(x*) is required to be non-negative, and therefore, for suffityen
strong uptake, we define an internal free boundasy at x; such thaC* > 0 for 0 < x* < xj, andC* =0
for x5 <x* <L.

Introducing non-dimensional variables$ = CoC, X" =X, X3 = |Xo, we write the advection-diffusion-
uptake problem for the solute in dimensionless form (as iD@Las

a2C dc N 1
W—Pe&_Daf(x), f—i;5(x—f|), O<x<e™,
L (2.1)
C|x=0 =1 C|x=£*1 =0 or C|X=><0 = & =0,
X=Xo

whereé; denotes the position of th# sink ( = 1,...,N), asillustrated in Figurg, £ =1/L and Pe=upl /D
and Da=qol /(DCp) are the microscopicélet and Damithler numbers respectively.

A global balance of diffusive, advective and uptake fluxegi{mensional variable€) Cy/L ~ ugCp ~
£ 1qp, identifies the organising centre~de~Pe~ £~2Da in (Pe Da)-parameter space (CLDJ). We look
for an approximate solution t®(1) about this point (with Pe- € p, Da= €2q andp,q= O(1)) in the
form of a two-scale asymptotic power series

C=C¢(X) =COx,X)+eCY(x,X)+2CO(x,X)+..., X=¢x. (2.2)
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Figure 2. A schematic random arrayMfsinks (circles), located at= &;; ticks indicate the position of
sinks in a periodic array of the same size (all variables arengin a dimensionless form).

Treating short and long-range spatial variabtesnd X as independent, the differential operators change
accordingly:
d 17} 17} & 92 9? , 02
& ax TEax @ e TP awax T axe (@3)
Substituting 2.2) and @.3) into (2.1), collecting terms in powers @&f, assuming-periodicity (i.e.& =i
in (2.1) and averaging over a unit cell, we get the leading-ordkrtem to (2.1), given by CLDJ as

ePX_1

(§-1) Sp—7 —§X+1, 0<X<1  for q<Q(p)

cOX) = pX (2.4a)

g7 -1 4

P ehX pX+1, 0SX<X, for q>Q(p)

0, Xo< X <1,

where
p’eP 1a—PX | g+p?
— —_1 <1). :

Note that forq = p (Da= €Pe), expression2(4) simplifies to the linear functio€© = 1 — X, greatly
facilitating calculations. Since an ergodic and spatiathyform (stationary) random medium has the same
leading-order behaviour as the equivalent periodic medifithe same average densifio¢quatq 2006,

we can useZ.4) to provide a leading-order estimate of the concentratield fivhen the sinks are distributed
either periodically or randomly (in the limi¢ — 0). Following Pavliotis & Stuart(2008, we can then
compute the fluctuations about the mean in the form ohtbraogenization residydefined as

rf(X)=c-cl. (2.5)

We consider different types of irregular arrays in ordernderstand the accuracy of the homogenization
description in these cases. Since we deal with point objédts convenient to employ standard random
point processes to construct sink distributions. A natahalice is to use aniformly randomdistribution
of N sinks in the open intervaX € (0,1) (see representative realisations of the solu@on Fig. 3(a) for
N = 49 and the homogenization residtfein Fig. 3(c) for N = 1019 at large Eclet number; Fig4(a,b)
shows analogous quantities at small Pe). Another natunalara distribution to consider is the normal
perturbation of a periodic array (also calladrmal perturbation where each sink is displaced normally
(with a given standard deviatioo on the X-scale) about its position in a periodic array (repres@rgat
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Figure 3. Simulation (solid) compared @ (dashed) for (a) uniformly random and (b) normally-
perturbed periodicd = 10¢) sink distributions, forlN = 49 sinks € = 0.02), Pe= 10 and Da= ¢Pe.
Sinks for these realisations are shown with circles. (c,d)rgle realisation of the homogenization residue
ré =C —C (solid) scaled bye~1/2, corresponding to (a,b) far = 0.001 (other parameters as in (a,b)).
The dashed line shows the pointwise ensemble nitefj and dotted lines show meah two standard
deviationsVar[re]l/ 2 both computed fromNens= 1000 Monte-Carlo samples.

realisations are shown in Fi§(b,d) for large and in Fig4(b,d) for small Pe). According to the properties
of a normal distribution, we expect 99% of sinks to remairhigit original unit cells for 6< 0 < €/6. Aso
increases, the sinks start swapping their unit cells anthgoof their new positions has to be applied. In the
limit of small standard deviation©(— 0), the normally-perturbed array tends to an unperturbenhgie
array, and a normally-perturbed array approaches a unijoramdom distribution awr/e becomess 1
(with periodic boundary conditions imposed upon sinkdriglbutside the domain). Therefore, we consider
two stochastic forms of the source terfnin (2.1):

(i) f= fu: auniformly-random distribution, whe& are independent ordered values drawn fi3t{0, e ~1J;

(i) f = fo(o): a normally-perturbed periodic distribution satisfying ~ .#(i,03), for some
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Figure 4. (a,b) Realisations of the solute profigsolid) and (c,d) fluctuations® about the mean
C® at small Pe= €2 for uniformly random (a,c) and normally-perturbed perio@@ = 0.5¢) (b,d) sink
distributions (fore = 0.1, Da= 22 (a,b) ands = 0.01, Da= €Pe (c,d)). Sinks in (a,b) are shown with
circles and dashed lines show the homogenization approim&©. Dashed lines in (c,d) show the
ensemble averadelr¢] from Neps= 5 x 10* samples, dotted lines show the meiatwo standard deviations
(scaled bye~/2q71).

varianceo? = (o/¢)?.

In order to assess the magnitude of the differerc8) petween the homogeniz€{® (X) and exact
solutions to the original problen2(l), we define the following deterministic measures for a snghlisa-
tion of ré:
dre ||

o (2.6)

1
réllc = max |ré rsz:/ r&2dx, |[ré||A, = |IrE||2. +
Ir¥llc Xe[O,l]‘ (S| L A (ro)edX,  Ir* G = Ir®llc,

L2

These are, respectively, the supremum (Chebyshev), mpaaresi () and Sobolevii!) norms.
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The modes of convergence 6fto C(9 defined in 2.6) are arranged in the descending order with
respect to their “strength” (except for the Sobolev norng, gré||c — 0 ase — 0 implies the convergence
of ||Iré||L,, while the converse is generally not true. Convergenceeribbolev norm, which takes account
of the first derivative, is stronger than convergence in teamsquared norm in a sense thaf|, < | - |42
(see, e.gPavliotis & Stuart(2008 for a more systematic discussion).

3. Correlation properties of the homogenization residue

Panels (c,d) in Fig8 and4 summarise the statistical properties of the homogenizagsidueré by plot-
ting an individual realisation of(X) (solid line) together with a pointwise 95%-confidenceeival (+2
standard errors SE¥ar(r¢]/Neng™/?; dotted lines) and the pointwise ensemble méni] (dashed lines)
computed via Monte-Carlo simulations &.{) for an ensemble dflgsrealisations. We note a very differ-
ent spatial structure of the residue figr(Fig. 3d) as compared td, (Fig. 3c) at large Pe (CLDJ); moreover,
despite a more “smooth” appearance of fluctuations at snealttieir magnitude in the case &f (Fig. 4c)
is much larger (over 20-fold for = 0.5¢, Pe= &2, £ = 0.01) than forf, (Fig. 4d).

To study the spatial correlation of the homogenizationdesi in more detail, in addition to pointwise
varianceVarlré(X)] and covarianc€ov(ré(X),ré(Y)), we adopt theransverse covariance

Covr(rf) = Cov(rf(X),r¥(1—X)) =E[ (r¥(X) —E[r*(X)]) (r¥(1=X) —=E[r*(1-X)]) |, (3.1)

which characterises to some degree how fluctuations arelated across the domain.

3.1. Numerical estimates of the covariance of the homogenizatisidue

Covariance matrices for the fluctuations in solute conegioin about the mean at small Pe, computed on a
uniformly random array (Fig5c) and on a normally-perturbed periodic array (Fd), show a prominent
cloud about the main diagonal, giving evidence for longgespatial correlations (illustrated by the point-
wise variance and transverse covariance distributiongga %a) and5(b) respectively, analogues of the
confidence intervals in Figl(c,d)). The computed variances and transverse covaridocdg, f, are in a
good agreement with theoretical predictions, which willdiained below.

In addition to the advection-dominated case fP4&), illustrated in Fig3 (see also Fig. 4 of CLDJ), we
further investigate the correlation properties by considpthe case when advection and diffusion balance
over the inter-sink distance (ReO(1)): illustrated in Figures. For the normally-perturbed distributioia
we observe a marked advection-induced drop in the transwergariance (Figeb) and a very narrow band
about the main diagonal of the covariance matrix (Bi), indicating a greater independence of each unit
cell in the case of,, as compared tdy,. The variance, like the pointwise standard deviation in B{d), is
uniform across the domain (outside the boundary laye¥s=atO, 1) for f,, but varies much more smoothly
for fy (Fig. 6(a,c)). Itis also of interest to note the negative correlafor “anti-correlation”) in fluctuations
at the points symmetrical about the centre of the array avskdb the boundaries fdy (Fig. 5a) but not for
fn (Fig. 5b) at small Pe. As &clet number increases, however, this feature gradualbpgiears (Figsa).

It is also interesting to highlight that the parabolic vada and transverse covariance of the residue for
a normally-perturbed array at small Pe (Fip) closely resemble the shape6&rré] and Covr[ré] for
a uniformly-random array for moderate-to-large Pe (@) and Fig. 4(d,e) of CLDJ); In the following
Sections, we seek to explore analytically how features sisctihe boundary layers in Fig(b), indicated
by Monte-Carlo simulations, arise from the interaction efetministic and stochastic factors in transport
past an array of sinks. Motivated by the structure of parangiace (Figla), we consider the structure of
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Figure 5. Statistical properties of the homogenizatioridwes for a uniformly random (a,c) and
normally-perturbed (b,d) periodic array at smadidret number (Pe- €2, Da= sPe, £ = 0.01). (a,b) Spa-
tial distribution of the pointwise varianc@ar(r¢] (circles) and transverse covariar€ev(ré(X),ré(1—X))
(diamonds) of the homogenization residdecomputed for an ensemble of sikig,s= 5 x 10%, and corre-
sponding theoretical predictions (dashed lin@s}® and @.19 for uniformly random (scaled bgeg?) 1)

(a) and 8.13 and @.14) for normally-perturbed array witlop = 0/ = 0.5 (scaled bye3q?g3) 1) ().
(c,d) Covariance matriov(ré(X),ré(Y)) corresponding to (a,b), computed at 100 equispaced paidts a
scaled by 1(¢¢?) (q= & 2Da).

multiscale fluctuations of the residu& at the two organising centres: (i) PeO(g), Da= O(&?) in § 3.2
and (ii) Pe= O(1), Da=0O(¢) in § 3.3
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Figure 6. Statistical properties of the homogenizatioridies for a uniformly random (a,c) and
normally-perturbed (witho = 0.5¢) (b,d) periodic array at moderatee€élet number (Pe- 1, Da= ¢Pe,
€ =0.01). (ab) Spatial distribution of the pointwise variari¢arré] (circles) and transverse covari-
anceCovr(r€) (diamonds); dashed lines in (b) indicate theoretical mtatis @.36) and @.37) scaled by
(e 0p)~2 (o = £ 'Da). (c,d) Covariance matri€ov(ré(X),ré(Y)) corresponding to (a,b) (computed
at 100 equispaced points, using 30" realisations; all plots except for (b) are scaledsby).

3.2. Analytical estimates of covariance fBe= O(¢), Da= O(&?) (diffusion-dominated at the inter-sink
scale)

We start by briefly recalling (and also extending) the metimbebduced in CLDJ for finding a correction to
the leading order solutio@(® in the case of uniformly-random or normally-perturbed sitigtributions for
Pe= O(¢), Da= O(&?) (again writing Pe= ep and Da= £2q). By using the statistical properties of these
distributions and an exact solution for a cell problem, we estimate analytically the mean and covariance
of the homogenization residue.

When sinks are distributed non-periodically we can derieehtbmogenized approximation &.() as
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follows. We initially use 2.2) to rewrite @.1) as

Cux+ 26Cyx + €2Cxx — ep(Cx+6Cx) = 2qf, (0<x<e 1,0<X <1),
Clx=0=1, Clx=1=0.

(3.2)

(assuming here for brevity th& does not fall to zero upstream ¥f= 1). We allowC, C?, ... to
have fluctuations, assuming that these are not large enoudjkrtipt the proposed expansion. At leading
order,Cl = 0,C9|x_g = 1 andC®|x_; = 0. ThusCO (x,X) = A(X)x-+ B(X). The first term must be
suppressed to avoid secular growth, so &t = C(?(X). Likewise at the following order we find that
Cc =c@(X). Collecting the terms in3.2) atO(£2), we obtain

cd =q(f—F), where gF(X)=C\—pC, (3.3)

N
with f = 5 8(x—&). This is to be solved subject ®Y =C? =0 atx= 0 andx = &1, Thus in
i£1

& <x< Ei;l (i=0,1,...,N), treatingx and X as independent and assumiRgs independent of to
leading order (verifie posterior), we have

C? = —IaF(x—&)°+ ai(x— &)+ B (3.4)

for somea;, B, takingéo = 0 andéy1 = L.

Using the diffusive-uptake flux balance B.8) at each sink and applying the global boundary conditions
C@ |0 =C@|,_.-1 = 0, we can derive recurrence relations égrand 3, which after some manipulation,
lead to the explicit expression (see Appendix B in CLDJ forendetail)

C? =1gFx(e ' —x) +q[(exRy—R) +x(i—N)], i=12...,N for &§<x<&1, (3.5

NI

where

R=5 ¢ (3.6)
=1

is a linear functional (partial sum) of the random sink piosis. Expression3.5) thus relates solute fluctu-
ations directly to sink distributions.
We note that all terms excepkRy — R = XRy — R (settingx = X/¢) in (3.5 are deterministic, and
therefore
c@ _E[c®]=q(XRy—R), (3.7)

whereR =R —E[R], andi € {1,...,N} satisfies§j < x < &11.
Likewise Cov(C'?(X),C(Y)) = g?Cov(XRy — R, YRy —Ry)), (wherei.k e {1,...,N} satisfies
i =& 1X], k= |e~tY]), so that

Cov(C?(X),C?(1—X)) ~ g?Cov(XRn — R, (1~ X)Ry — Ru_i). (3.8)

The choice ofN —i instead ofN + 1 —i does not affect the results at leading-order, owing to I&ige 1
and the smootiX-dependence of the variance and the transverse covariasegl|l be shown below.
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Thus, by applying the definitior8(2) to (3.7) and @.8), the variance and the transverse covariance of
the correction are expressed in terms of the partial S&m(8.6) for i = | ¢~1X | as follows:

VarC?] = ?E[(XRy — R)?] = ¢? {X?VarRy] — 2XCov(R;,Ry) + VarR]} (3.9a)
Covr[C?] = PE[{XRy — R} {(1- X)Ry — Rn_i}] = (3.9b)
= ?{X(1—X)VarRy] — (1 - X)Cov(R;,Ry) — XCoV(Ry_i,Rn) +
+CoVv(R,,Rn-i) } -

Our task therefore reduces to finding the correspondingamads and covariances of the partial sums
R (3.6) for specific sink distributions.

3.2.1. Normally-perturbed sinks

Recall whenf = f,, we have& ~ .#(i, g3). From B.1) and B.2), given in AppendixB, the mean,
variance and covariance Bf can be expressed as

eR] =Y varr] = covR.R =g, (<K, (3.10)

and thus 8.9) simplifies to
VarlC?] = ¢? {X?VarRy] + (1 2X)VarR]}, (X<1i=]e X <N), (3.11a)
Covr[C?] = *{X(1 - X)VarRy] + X VarR] - X VarRy_i] }, (X<, i<Y). (3.11b)

By settingi = (i —x) + £ 1X andN = ¢! — 1, we obtain from8.10, E[XRy —R] =& 23X(1-X) —
%(x+ i)(i4+1—x). Substituting this into3.5), we get an expectation of the correction in the case of nbrma
perturbations (CLDJ):

E(C?)=e21q(F —1)X(1—X) + 3q(x—i)(i +1—x). (3.12)

To ensure the original expansion is asymptotic, we must Fake1 at O(¢~?), yielding from @.3) the
leading-order equation fa€(©) and recovering the parabolic cell solution obtained in Cli@¥Ja periodic
array. Simulations indicate that the contributionGe 1) (and hence&CV) vanishes; however, a further
correction toE[r¢] of the order ofe? is present, presumably involving a closure condition fer ¢hrrection
at higher order.

Substituting the variance and covariance of the partialssg&ng3.10) into (3.11), settingi = £ X +y
(y=i—x=0(1)) andN = ¢ — 1, and retaining the leading-order term in powerscpfve find, after
some algebra, thaB(11a) gives, for the variance (CLDJ),

VarfC?] = e *q? 0 X(1—X) +O(1), (3.13)
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and using 8.11b) for 0< X < %, i <N —i (owing to the symmetry of the covariance) gives, for the ¢ran
verse covariance (not reported previously),

e 19202 X2+ 0(1), 0< X<,
Covrc@] = & 90X +00) 2 (3.14)
e 1?08 (1-X)2+0(1), 3<X<1,

in a good agreement with simulations (FEh). From @.6), (3.12 and B.13, we have||E[C?)]||c =
lg, |EC@)|, = ¥q, |E[C?][|y: = %2 e 1q,/1+ L2, (where we integrate ovefi,i + 1) and

use ¢dX = e-1d/dx), and|[VariC@]|lc ~ e 1202, [VarC®]||L, ~ Y e 120, |[VarC@]||,: ~
msflq og, sothat]- I, < | llc < [lu2, as expected. We estlmate the magnitude of the homoge-

nization residue as
Il ~ 2 (IEIC@] | + [Varic®]|1¥2) (3.15)

for each of these norms, and hence
Iréllc = [Ir¥lL, = O(agoe¥?), [Irf|lq: = O(qe). (3.16)

Thus whileC® hasO(1) mean,r¢ is dominated by fluctuations of relative magnitu@ge®?); however
the gradients irE[ré] are larger than the fluctuations about the mean (the largdiegres at the inter-sink
scale ofC(?, which contribute to slower convergence in the Sobolev nitram in the mean-squared norm,
are illustrated in Fig4d). This approximation holds as long as sinks do not exchateyEes, which can
be expected oncey becomes sufficiently large. BecaugariC?] scales withop, (3.13 suggests that the
fluctuations in the case of stronger mixing of perturbed $iations will be larger tha®(£%/2).

3.2.2. Uniformly random sinks

For f = fy, the sinks form order statistics with the inter-sink distas obeying a Dirichlet distribution of
dimensionN + 1 (Matsunawa1985 (see AppendiB for more detail).
From the properties of the linear combination of the ordatistics 8.15), we have

vaiR) — 0+ )(<2;|u++lz)>(N+1)‘(ﬂi|[T]z)2’ n«:[m=@7 (3.172)
o+ D@+IN+D) i+ (k—)(N+1) ERIER]
Cov(Ri,R«) = 60N T 2) + 2NT2) "Nz i <k. (3.17b)

Substituting 8.17) into (3.9) and again writing = £~1X 4 (i — x) (taking |i — x| = O(1)), we find to
leading order ine (using Maple) explicit expressions for the variance (as in CLDJ) and th@dverse
covariance (which has not been reported previously) of threection in the case of a uniformly random
sink distribution:

VarfC®?] = e 2 q? £ X2 (1-X)2 + O(7?), (3.18)
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e 3 A X2(1-6X+7X2) + O 2),
—e 3P L (1-X)2(2—8X +7X?) + O(e72),

<X
<X

(3.19)

= Nl

Nk O
NN

Covr [C(Z)] = {

which are in a good agreement with numerical solutions shioviFigure5(a).

From @.6) and @.18), we find||[VariC®]||c ~ 3, 3¢, |[VariC?]||, ~ %0 e-3¢?, | VarC@]|y: ~
Y032 (with |E[C?)]|c = [|E[C@)]||, = O(q), [[E[C@)]||4: = O(e~1q), as for thef, distribution).
Therefore, using3.15, we have

Ir¥llc = [Ir&[le, = [[r&]l42 = O(qe™/?). (3.20)

The fluctuations abouE© are thusO(£%/2), which is significantly larger than th@(g?) error for the
magnitude of homogenization on periodic arrays (CLDJ), tieg even dominat®(¢) contribution of the
gradients in the mean (periodic) component®f(Fig. 4(c,d) shows how the homogenization residue with
f = fy varies more smoothly at the inter-sink scale than the reswith f = f;.)

We complete the analysis by considering the fluctuationshoraogenization residue about the second
organising centre Pe O(1), Da= O(¢).

3.3. Analytical estimates of covariance fBle= O(1), Da= O(¢) (balanced advection-diffusion at the
inter-sink scale)

It remains to establish the statistical properties of theabgenization residue in the case of moderate-to-
large local Reclet numbers Pe O(1), Da= O(¢) = g1, g1 = O(1)), when @.1) transforms to the following
problem:

N
Cxx + 26Cyx + €%Cxx — Pe(Cx + €Cx ) = equf, f= _25(X— &) (3.21)

Clx=0=1, C|x=1=0
(again assuming here, without loss of generality, @dbes not fall to zero upstream ¥f=1). At O(1),
we getCly — PeC¥ = 0,CO|x_o =1 andC(@|x_; = 0. ThusC(® (x,X) = &(X)e™**+b(X), &b being
arbitrary constants oK. The first term must be suppressed to avoid secular growthesi= €1 — o as
£ — 0), so that agai€(® = C(O)(X).
Collecting the terms in3.21) atO(¢), we obtain

Cw —PeC = qu(f(x)—F(X)), where gF(X)=—PeC. (3.22)

This is to be solved between each pair of sigkandéi.1 (i =0,...,N, taking againfg = 0 andén.1 =
£ 1), subject taC¥ = 0 atx = 0 andx = £~ 1. Thus

CO = UF(x—&)+ 6" 9B, & <x<&.qfori=0...,N, (3.23)
with someq;, Bi to be determined.

Integrating 8.29) across = & gives the balance of concentrations and flux@$!| . =C%|;_ and
C§1)|5i+ *C>(<1>\§i7 = g1, which (using 8.23 for & < x < &1 and&_1 < x < &) allows us to obtain the
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following recurrence relations:

& = &i,lepeﬁi + %16’ (3.24a)
wheredi = & —¢&_1,fori=1,2,...,N.

Summing 8.24b), taking the product of3.24a) for j = 1,2,...,i, and assuming tha is independent
of i to leading order, we find

& —e% (ao+ Q5 e*PefJ)7 (3.25a)

=1
B =Po+ L(F& ), (3.25b)

using the identitys}_, Aj = &.
We define )

I —Pe¢;

Q=Ye '™ (3.26)
. J;

and substitute3.25) into (3.23 to find
CW = & (Fx—i)+ (Go+BQ)e" ™+ & <x<&1,i=0,..,N. (3.27)

ImposingC@ =0 atx=0 (i = 0) andx = &1 (i = N) to satisfy the global boundary conditions, gives
~ -1 -1
Go=—Po=—L[Fe 1-N+Qu eP® 1/(eP® " — 1), and so, after some algebra, we obtain

Pex
W B ey i) (Fe oS L]
¢ Pe[(FX - (Fe N)ep%_l] (3.28)
Pe ) |
_ th!%’z[(epex_l)QN—epex(l—e P%)Qi} & <Xx<&41,i=0,...,N.

This expression again relates solute fluctuations direotink distributions and is the analogue 8f5).

Analogously to§ 3.2, we observe that the statistical properties of the comadd@V), and thus the
homogenization residug ~ C —CY), are entirely defined by the combination of exponentialipbstims
Qi andQy in the second term of3(28. Therefore (setting = X/¢€) in (3.5), we have

c® —E[c] = - ey [(epex/ Fo1Qn "1 PG| (3.29)
—e

Whereéi =Q —E[Q], i=1,...,N.
Applying the definition of variance and transverse covar&éa@.1) to (3.29, expanding and taking the
expectation, we expred&rfC™M] andCovr[CY] in terms of the partial sum@; of a sink distributioné; as
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follows:
2
Var[c(l)] - (%) El{(ePEX/g _1) (:)N _ePeX/s(l_e—Pe/g)éi}Z]
2
= <1_21—/Izee/e) { (ePeX/g _ 1)2Var[QN] B 330

_2ePe/E (epex/f - 1) (1— e*Pe/s) Cov(Q:,Qn) +e°7*/* (1_ eipe/s)z Var[Qi]}’

{(ePeX/e ~1) éN _ PeX/sQl}
TR &

2 _
- (anl,e) { (1_epex/f — Pl X)/e +ePe/f) VarQn] + (3.31)
+n (epex/£ - ePe/e) Cov(Qi,Qn) +1 (ePe(l*X)/E - epde) Cov(Qn-i,Qn) +

+’729P9/8C0V(QiaQNi)}a

wheren =1—e "%,

Our task once again to find the corresponding variances avatiances of the partial sui®; for a
specific sink distribution. However, in this case, the fiumtal of the sink distribution3.26) becomes
nonlinear €f. (3.6)) despite the linearity of the original probler.{). We pursue this task for normally-
perturbed sinks, leaving the uniformly random case for arkistudy.

3.3.1. Normally-perturbed sink distribution

Considerf = f,, & ~ .#(i,03). Forgp = 0/e < 1 and Pe not too large, we can assuyf&) = e P&
has an approximately normal distribution, so that expagdiabout the mean sink locatign = i, we have

O+ (& — )~ +9 (& — ) +3d (&—mw)?+..., gGi=0(m). (3.32)

We then compute the approximate mean and variangéLej

Elg(ui+ (& — )] ~ g + 39/ Varl&] + L 9" E[(& — w)*] +..., (3.33a)
Var(g(&)] = E[g(&)?] — (E[9(&)))?, (3.33b)
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which, using the moments of the normally-distributgedreduces (see AppendB) to
Varg(&)] ~ Péog [1+ 2P&ag]e 278, (3.34)

The partial sum3¥.26) can be equivalently rewritten &% = z‘jzlg(éj), and owing to the independence
of sink positions (at sufficiently smatip; see B.7) in AppendixB for details), the covariance and variance
of Q; are given by

—2Pei

Cov(Q:, Q) = VariQ] = j;lear[g(Ej)] ~PEog[1+3PEdg] 1;25*_1 ,

i <Kk. (3.35)
Substituting 8.35, i ~ £ X andN ~ £t into (3.30 and @.31), after some algebra, we find

+es —e: —e: +e“e

(eZF’e— 1) (e% —1)2

( PeX PE(l X) Pe(1+x) PE(Z X) 2Pe _ 1)
VarlCV] ~ 262 0 (1+ 3 0g PE)

. (3.36)

-1 e -2
Covr[CY] ~ @02 (1+ ZaoPez)(ZPe—l) (ep?—l) <2es 12ee Xy

(3.37)
+e";2(1 ><)+e%e(1+2><)_Ze%e<1+X)_Ze%é(z—X)_e%E(l—zm Pe2x+ezPe 1),

1
0<X< 3,

whereCovy[CV] for % < X < 1 corresponds to substitutingwith 1 — X in (3.37), due to the symmetry of
the covariance.

By taking the limit of 3.36 and (.37 for small Pe< O(¢), we find at leading ordeWarC(Y] ~
7192 02 X(1—-X) andCovr[CV] ~ e 712 02 X?, which are identical to the variancg.(3 and transverse
covariance 8.14) respectively (withg; = €Q).

Figure7 shows that the theoretical predictior3s36), (3.37) agree well with Monte-Carlo simulations at
intermediate Bclet number Pe- £1/2 (O(g) < Pe< O(1)), when the effect of advection on the fluctuation
becomes noticeable but no boundary layer has been formedevéo, 3.36) differs by a factor of ca. 1.3
for Pe= O(1) (Fig. 6b), which can be attributed in part to neglecting théPe) terms, compared to the
leading-ordeiO(Pe/¢), in the exponents 0f3(36 and @.37), and to the breakdown of the approximation
(3.32 for Pe> O(1). Nevertheless,3.36) can be used to explain the boundary layer in the variance at
X =0,1, observed in Figs(b), which has widtfO(e/Pe).

In order to estimate the magnitude of the fluctuations, aymale to 8.15, we take the Chebyshev norm
[ré]|2 ~ maxy Var(ré] ~ sZVar[C<1)]|x:l/2 as a conservative measure (being an upper bound of the other
norms defined in4.6)). Then @.36) gives (after some algebra)

262202 (1+302PE) 1—e”

e
eZPei 1 1+e,

Iré)|2 ~ , qu=Dale. (3.38)

NI NI
m‘g m‘g
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Figure 7. Monte-Carlo estimates of varian8&rré] (blue circles) and transverse covariance
Cov(ré(X),ré(1— X)) (black diamonds) for a normally-perturbed random proceik @w = 0.5¢, com-
puted for Pe= €2, q; = Da/(ePe =1, € = 0.01, using 5< 10* realisations; the dashed lines indicate the
corresponding theoretical predictior&s36) and 3.37). All data are scaled bge g1 0p) 2.

When||ré|lc = O(1), the homogenization approximation fails, defining theicaitDamiohler number

Pe y 1/2
o } . (3.39)

We can therefore divide (PBa)-parameter space into two regions: forP&(¢), Day ~ O(Uglel/z) and
for O(¢) < Pe< O(1), Day ~ O(g, 1 v/Pe.

Similarly to (3.16), we also estimate under the andH* norms @.6) the magnitude of the variance
of the homogenization residue. Integratir®y36) and its derivative with respect % over 0< X <1, we
find (after some algebra), that

NI NI
(0]

Dag ~ e?Pe_1 1+e”
" 1202(1+302PE) 1_e-

£ HVar[C(l)]Hiéz ~ Dado/VPe, ¢|VariCW)] Ha/f ~Dady/(ePi for &< Pe< 1, gp< 1. (3.40)

Comparing these to the norms for the periodic (mean) compudigfe CV]||c = |E[eCY]||, = O(Da)
and|E[eCY)]||,» = O(Da/¢) respectively (from CLDJ), we finally obtain for

Ir¥)l ~ & (IEIC]| + [VaricV]¥?) (3.41)
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%(0,1) | A(i,08) | Periodic (mean)

IréllL, | O(ave) | O(qope¥?) O(qe?)

Ir¥lly2 | O(ave) | O(ae) O(qe)

Table 1. Asymptotic convergence rates of the homogeniza&sidue, for a periodic array (CLDJ) and

random arrays (based on the analytical results3®) in the mean-squaredl§) and Sobolev (mean-squared

with the first derivativeH') norms at PeS € (q = Da/e?, gp = g/e < 1).

the estimates
[r¥]lc =~ |Ir¥||L, ~ O(Dado/VPe), |[[rf||y1~O(Daje) for &< Pe< 1 vVPe<og<1l (3.42)

We now combine the results to survey the accuracy of the hemiagtion approximation in (P®a)-
parameter space for different stochastic sink distritmgtio

4. Applicability and accuracy of the homogenization approxmation on random arrays

Based on the analytical and numerical result$®fl, 3.2and3.3we can estimate the error bounds of the so-
lute transport homogenization (the magnitude of the ressiély using @.15 for “strong” (H') and “weak”
(Lz) norms @.6). The regions oH?! (Ly)-convergence in (R®a)-space are defined §sf |1 < O(1)
(/[r¥]lL, < O(1)). Tablel summarises our findings foi, (3.16 and fy (3.20 at Pe< € (results for the
periodic case are from CLDJ). When diffusion dominates antiezoscale (Pe= O(¢), Da= O(&?)), the
magnitude of the pointwise variance depends strongly onlégeee of periodicity in the underlying struc-
ture, with fluctuations rising frord(qe3/2) for almost periodic sink distributions ©(q&'/2) for uniformly
random sink distributions. The corresponding regions ofveagence for P& € with a uniformly-random
(fu) sink distribution are illustrated in Figur&a); the corresponding map for a normally-perturbed peri-
odic array (n) is shown in Figure3(b). The weak and strong convergence boundaries at @¢1) and
Da= O(¢) in the periodic case shrink to DaO(£¥/2) and Da= O(¢) with f = f, and to Da= O(£%?)
with f = f,. In addition, we employ3.42) to assess the accuracy of the homogenization approximgio
fo-distributed sinks in the intermediate range @cket numbergd <« Pe< 1). Now the weak convergence
boundary Da= O(1) for € < Pe< 1 for periodic sinks is replaced by Da O(v/Pe) when f = fp; the
strong convergence boundary at BaD(¢) is unaltered.

Motivated by the accuracy of periodic homogenization frohDG (thick dashed lines and dash-dotted
lines in Fig.8(a,b)) and informed by the analytical magnitudes of fludtregin the homogenization residue
and its gradient at Pg€ ¢ (Tablel), we conjecture the convergence regions fipand f, at Pe=> 1, based
on Monte-Carlo simulations. Figui&c,d) show convergence results determined by Monte-Camoi-s
lations when(Pe Da) = (1,£2) (point (1) in Fig.8a) and(PeDa) = (¢/2, £¥/2) (point (2)) with f,-
distributed sinks. Panel (c) in Figushows||ré||., ~ £€¥2 in a manner independent of Pe, Da for points
(1) and (2). Assuming thgré||., is linear in Da (due to linearity of the original probler®.{)), so that
[ré||L, ~ DagP P& and||ré||, ~ €¥/2 ateach point tested, it follows th@té ||, ~ Da/( /e Pe) for Pe> 1,
which lies below the periodic-sink-distribution thresti@a/Pe. Likewise, assuminré||,;1 ~ DagPr Pen,
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it follows from the scaling illustrated in Fig3(d) that||ré||,. ~ Da/(ev/Pe for Pe> 1 (as in the peri-
odic case). While not a formal proof of convergence, thesgectured boundaries are extrapolated into
Pe> 1 in Fig.8(a), while those arising from Tableand (.42 are plotted for P&S 1. Analogous Monte-
Carlo simulations for thd,-distribution with oy = 0.5 (not shown) agree with the conjectured boundaries
[ré||L, ~ Da/Pe and||ré||4:. ~ Da/(¢v/Pe for Pe> 1, plotted in Fig.8(b), both of which match the
periodic-sink case.

Thus, the effect of stochasticity on the convergence ratgsaatest for smallé&tlet number Pe« 1,
while the presence of strong advection seems to make the demmation approximation less sensitive to
the fluctuations due to the irregular microstructure. lesgingly, in the case of a uniformly random distribu-
tion (Fig. 8a) for Pe< &, the magnitude of the fluctuations is such that the regionrohg convergence in
|- Iz (medium shade/green) and the region of divergence (dadedteal) of the homogenization residue
collapse to eliminate the transitional weak convergeng®rein|| - ||, (light shade/yellow). In the region
of divergence of stochastic homogenization (dark shadéf€ig. 8(a,b), below the thick dashed lines) the
“noise-to-signal” ratio becomes larger than 1, and thusrtiquéar realisation of the random array cannot
be neglected in calculating the macroscopic transport. Nidienally-perturbed distributiord, with small
standard deviatioor = £y therefore takes a distinct position among the considenediaim geometries, in
terms of preserving high homogenization accuracy, pdeituat small Pe.

5. Discussion

In the present paper we have analysed the spatial cormelatid magnitude of fluctuations (about the
leading-order homogenization approximation) of a scalangity transported by advection and diffusion
past an irregular array of sinks. We have shown in partichitar fluctuations can be expressed as a func-
tional of the sink locations. At low Pe, this functional isé¢ar. In CLDJ, we derived resulting expres-
sions for the distribution over the domain of the pointwisgiance of fluctuations; here we have derived
the corresponding pointwise covariance of fluctuationaufdformly random and normally perturbed sink
distributions 8.14, 3.19. These results reveal the multiscale structure of the lganization residue: fluc-
tuations appear to be correlated over lengthscales comlpamthe whole domain (Fid) even when sink
distributions are correlated only over short distances. ihe= O(1), the functional connecting fluctua-
tions to sink locations becomes nonlinear and evaluatiagtéatistical properties of the fluctuations is less
straightforward. To analyse this case, we used an appraximgnat is sufficient to capture the structure of
the variance and covariance for normally perturbed sinksifieall but finite Pe §.36-3.37), Figs6(b), 7);
extending these results to larger Pe and to uniformly ransimdistributions remains an interesting open
problem. Curiously, advection changes the shape of theufitioi distribution without inducing an asym-
metry in the flow direction, at least for the examples examhinere (Figs3(c,d), 6(b), 7), emphasising the
equal importance of the global inlet and outlet boundarydamms.

These results, combined with direct Monte-Carlo simulaijovere then used to characterise the con-
vergence of the homogenization approximation ac(@gsDa)-parameter space for different sink distribu-
tions. The magnitude of the homogenization residue faliglistributions with a greater degree of period-
icity but grows with increasing sink strength (CLDJ). In F&(a) of CLDJ we identified the domains of
convergence (under two representative norms) of the honipgfgon approximation for a periodic sink dis-
tribution. Figure8(a,b) extends these results to uniformly random and noynpaltturbed sink distributions
respectively. There is a pronounced shrinkage of the domwgonvergence, especially for smalkkétet
number (Tabldl), which increases with the loss of regularity in the sinkrilisitions, in a manner illustrated
clearly for individual realisations in Fig4(a) and4(b). Thus corrections to the leading-order approxima-
tion can be significant even when the exact solution is sefiity smooth. The character of the fluctuations
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Figure 8. (a,b) Types of convergence in (Pa)-space for stochastic homogenization of solute tratispo
at small-to-moderate Pe with (a) uniformly random disttdalisinks, and (b) normally-perturbed sinks (for
0p = O(1)). Grey/blue thin solid lines bound the asymptotic regini2s A, Up, Ua, Uz, A9 illustrated
in Fig. 1. The region of “strong” convergence in the Sobolel\*] norm is shown in medium shade/green,
the region of “weak” convergence in the mean-squatedl fiorm is in light shade/yellow, and the region
of global divergence (i.-norm) is in dark shade/red (plotted fer= 0.05). Solid boundaries in P€ 1
are as identified in Tablé and @.42. The black thick dashed lines in (a,b) indicate the bordethe
divergence region in the case of a periodic array (CLDJ); ttashed and dash-dotted lines conjecture,
based on Monte-Carlo simulations, the upper boundariés ahdH!-convergence respectively for higher
Pe. (c,d) Monte-Carlo simulation of convergence ratesHergoints (1) Pe= 1, Da= £ (solid line) and
(2) Pe= £~ 1/2 Da= %2 (dashed line) from the parameter space (a) (ensemble a&vevag 1000 samples
for eachN ~ £71); triangles indicate a slope in accord to the scaling of hie tlashed (Da- /€ Pe) and
dash-dotted (Da £v/Pe) lines in (a) (with both points lie parallel to the formeit bot to the later lines).
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at low Pe is sensitive to the sink distribution, with shargeadients arising between normally perturbed
sinks than between uniformly random sinks (compare Big$ and4(d)). This reflects the fact that the
breakdown of the homogenization approximation in the unily random case for P& ¢ bypasses the
regime of weak convergence (Figp): fluctuations are relatively smooth but grow rapidly ingnaude as
Da increases. At higher Pe (Fig), for both sink distributions that we examined, convergeisanfluenced
both by the magnitude of fluctuations and large inter-sirddggnts, allowing regimes of weak and strong
convergence to be identified. An important factor contiifgito the deviation of the exact solution from
the homogenization approximation is the clustering of sitflat is evident in Fig3(a,b). This might be
analysed in future studies by considering arrays of sink&ofing strength with larger inter-sink distance,
or by introducing a lengthscale for inter-cluster spaanthat is intermediate between the microscasnd
the global scale 15(« €1 < 1), and then performing reiterated homogeniza@msoussagt al. (1978.

We can compare our analytical and numerical predictionh @xtisting theoretical results for random
homogenization of problems similar t@.0) that take into account the spatial autocorrelation priger
of the coefficients of corresponding governing equatiomourgeat & Piatnitski(1999 show in their
Lemma 4.2 that the homogenization error of a one-dimensidiffasion-reaction equation (Pe 0) is
E[mxax| ré(X) |2]¥? < O(y/€) when the diffusion coefficient is a stationary random preosith “short-

term memory”, andE[mxax\r’°‘|2]1/2 < O(g¥/2) for a “long-term memory” coefficient (& y < 1). Bal &

Jing (2010 generalise these results for a linear transport-attémuscattering equation in two and three
dimensions and show that, when the equation coefficientsaneded functions of a Poisson point process
(with short-term memoryy > 1), the following estimate holds)E[||r£||Ez}1/2 < O(y¢). Since the source
term in 2.1), defined by a sink distribution, is a short-term-memoryistary process, one might expect a
similar upper bound on the residug being applicable. We indeed observe that the homogenizatior
for both stochastic sink distributions considered herebarnded byO(1/€) for Pe> 1, when Da= O(ePe)
(data not shown; see al€thernyavsky2011). This upper bound is exact for a uniformly-random disirib
tions; however, it considerably overestimates the errdhécase of a normally-perturbed sink distribution
(which can be as low &3(¢) for this parameter regime), highlighting the importanceistribution-specific
error estimation.

The present problem was chosen to be deliberately simpleder do allow analytical progress. Many
extensions might be usefully explored. In CLDJ, for exampiereported results for sinks satisfying a hard-
core distribution (for which sinks are distributed sequedht from a uniform distribution provided they do
not fall within a prescribed distanckof an existing sink). The statistics of fluctuations resesthbse of a
uniformly random distribution (Fig. 4(d,e) of CLDJ) whéns sufficiently small (just as fluctuations over an
array of normally perturbed sinks become essentially timisiishable from those over a uniformly random
array wheno 2 0.3). Even though the hard-core process appears empiridabgicto a periodic array for
largerd, the solution over a hard-core array converges slow& ®than that over a normally-perturbed
array for sufficiently smalk (data not shown), because of the lower degree of long-ramgelation in sink
locations for normally perturbed sinks.

Another obvious extension of the present model is to consitleer types of uptake kinetics. We
demonstrate in Appendi& that moving from zeroth to higher-order kinetics retains gross features of
the leading-order analysis, with the leading-order homdaggion approximation satisfyir@§<0>>< — pC)(<0) =
q(C@)?. The corrections t€© obtained on a periodic array in CLDJ for = 0 also remain valid for
a > 0, substitutingg with q(C(©(X))?, i.e. the bounds on the homogenization residue becomea#ipati
non-uniform, varying slowly over the array. However, a mdegailed analysis of fluctuations for > 0
remains the subject of future work.
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Finally, it is of interest to consider further extensionstioé present approach to problems in two or
three dimensions and to sinks of finite size, so that the acgwf homogenization approximations for flow
and transport problems in random porous media (of the waillestrated in Figurel) can be assessed for
different classes of stochastic geometries.

A. Transport with power-law uptake kinetics on a periodic array

We consider a model generalising 1) that is given by

d’C dc ca 1
W—Pe&_Daf : f_;(SX &), O0O<x<eg (A.1a)

dcC

C‘XZO = 1a Cl)(:gfl = 0 or C‘X:XO = &
X

-0, (A.1b)

where Pe= ugl /D is the microscopic &clet number, and D& gol /(DCy™®) is the microscopic Danihler
number andx is the order of uptake kinetics (thag is measured in mek~1-m~2 for zero-order uptake
(a =0) and in m s for first-order uptaked = 1)).

We look for an approximate-periodic solution to2.1) about the organising centre Pes p, Da= 2
(p,g = O(1)) in the form of a two-scale asymptotic power serid<?). Substituting 2.2) and @.3) into
(A.1) and collecting terms in powers ef we get alO(1)

CO=cOx); COx_g=1, COlx_1 =0 or COx_y, =C|x_x, =0. (A.2)

At O(¢), we find thalC) = 0, and alO(£2), we obtain

C§(°)>( — pCE(O) - c? +q(C Zlé X—1) (A.3a)
Cc@ isx-periodic. (A.3b)

Integrating A.3a) over a unit cel-1/2 < x—i < 1/2, we finally have
Cix— PG =a(C?)*, (A4)

subject to the global boundary conditions. Solution anaitext analysis foo = 0 is given in CLDJ. For
first-order kinetics ¢ = 1), equation A.4) has the solution

clO = gPX/2 sinh<\/<1+7/4(l—x)) /sinh\/m, (A-5)

shown in FigureA 1. At large Pe, neglecting the diffusive boundary layer atdhéet, this simplifies to
CO = e~ @PX (cf. O =1—(g/p)X for zeroth-order uptake; see also the general expresgid)).(
Both global advective and uptake fluxes are approximatelgnoad wherg ~ p > 1 (as showed by the
asymptotic line Da= €Pe in Fig.1); however this balance is more sensitive to the change ifPBaa-
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Figure A.1. Leading-order approximatiad®? for transport with first-order uptakea(= 1) past a
periodic sink distribution. Concentration profilea.p) for points (1-4) in the(Pe Da)-parameter space
(Pe=£2,1,€2,1 and Da= ¢,£%6 €3 £14), corresponding to the transport regimeas,Wa, D, A defined in
Fig. 1 (computed fore = 0.05; circles show the locations of the 19 sinks).

tio in the case ofr = 1 than fora = 0, owing to the exponential rather than linear decay in tHatso
concentration.

Substituting A.4) into (A.3) and using the global boundary conditief?) |x_o = 0, we find the first non-
vanishing correction t€(© in a unit cell: C? = —J(C(?)@ (x2 - |x]), which becomes of the same order
of magnitude a€™ for q= O(¢~1) (Da= O(¢)), suggesting the second organising centre at0@(¢),
Pe=0(1).

Analogously, substituting2(2) and @.3) into (A.1) around the second organising centre=P&(1),
Da= O(¢) = €qi, and collecting terms in powers ef we get the following problem for the correction to
C9 in a single unit cel-1/2 < X =x—i < 1/2 (prime overx is omitted):

cd —peclt =pec¥) +q (CO)*5(x),  CY isx-periodic, (A.6a)
which has a solution

() — 0 (C@)” (_ exp(Pe(x+3)) . cothPe/2)+ 1) | A7)

2sinh(Pe/2) 2

for 0 < Fx< 1/2, where the global boundary conditioA.(b) is used to derive the local condition
C(0) = 0. Comparing A.7) to the correction obtained in Eqn. (A12) of CLDJ far= 0, we note that

the uniform ratiog; /Pe is replaced with a slowly varying correction magnitadéC(?))? /Pe in the case

a > 0. Therefore, the upper limit on the applicability of homagetion is changed from D& max{1, Pe}

to Da(C<°>)a < max{1, Pe}, thus becoming heterogeneous over the array. Otherwisde#ting-order
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regimes depicted in Figurkeremain valid fora > 0.

B. Moments of a sink statistics functional

In this Appendix we derive the mean and transverse covagiahthe linear8.6) and nonlineard.26) partial
sums of the sink statistics needed to compute the corralgtioperties of the homogenization residue in
§3.2and3.3

B.1. Normally-perturbed periodic array

We first consider a normally-perturbed periodic arfay- A (j, 62) ~ j + 004 (0,1), i.e. E[§j] = yj = j
andVar(éj| = ag (o= o0p¢, takingap < 1 in order for sinks not to swap places) and compute the manent

of (3.6) _
=S &, i=1,...N.
20!

Owing to the independence &ffor small gy, using the linearity property of expectatim‘{zij:1 Ej} =

Zijzluj = i(i+1)/2 and the property of a non-centrgf distribution with one degree of freedom
E[¢?] = u?+ 0§, pj = j, we have

i A (], 00 (< 1) |ao) (B.1)

It remains to obtairCov(Ry, Rp) = E[RRy] — E[R(JE[Rp] for k # p. The independence dj and§,
i.e.Cov(éj,&) =0, for j # 1, assuming thaty is small enough for sinks not to swap places &nd p,
gives

K K K
Cov(R,Rp) = > 3 {E[&;&] - =3 Zl (& &1 —E[&]E[&]} +
== [S1=
k p k Kk K (B.2)
+y Cov(&j, &) = Zz 1—15[251' ElS &| =VarRd,
S =Tl = =

¥

reducing the covariance (fér< p) to the corresponding variance.
We now turn to the case of the nonlinear functional of sinkriigtion Q; given by 3.26

Q=Ye ™ &~ (,08), i=1...N,

wereE[&] = i =i, Var&] = g
Assuming small standard deviatiog/ 1 < 1, we can find the corresponding expectation, variance and
covariance fog(&) = e P& by assumingy has an approximately normal distribution, and expanding it
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about the meay;:
E[Q(pi + (& — )] = Gi + 397 Var&] + 55 0" E[(& — k)] +..., g =g(H). (B.3)

For a normally distributed; with E[(& — 1)*] = 303, (B.3) gives

i i Pej Peza Pé‘o l-e —Pe
E[Q] = zl 0(&)] ~ [1+ 1 P&a2 + LPéad] se e _ [1 T e B9
=
where we used the geometric progress@mJ =s(s"—1)/(s—1) to compute the sum.
1
Analogously -
Varlg(&)] = E[9(&)%] — (E[g(&)])? ~ (9) Vari&] + (391d” + § (0)?) EI(& — k). (B.5)

and sincevariQ|] = 3§_; Ti—1{E[0(&))9(&)] — E[9(£j)] E[9(&)]} = ¥j_1 Varig(;)] due to the indepen-
dence oféj andéy, i.e. Cov(g(&i),9(ék)) = 0, for j # k and smallog, we get from B.5) the variance

i —2Pd
VarQ| ~ P&og [1+ 3 PEg ] Z e—2Pej_ PE0g [1+ 3P0 +0(af)] 71e2§e

=1

(B.6)

It remains to find the covariancBov(Qi,Qx) = E[QiQk] — E[Q]E[Qy] for i # k. We denoteg,’=
9(&) —E[g(&)], so thatE[§i] = 0 andE[§?] = Var[g(&)]. Then, fori <K,

ik i ik
Cov(Q.QJ = 3 5 Flfi6] = 3 B+ 3 3 Fléd]
(B.7)

- 3 Varg(&)] + 3, 3 Cov(a(&).a(&).

with the first sum on the right-hand side &.7) being equal toB.6) and the second sum vanishing due to
the independence of &) andg(é) ), i.e.Cov(g(&i),9(é)) =0 (j #1), for sufficiently smalloy, providing
the covariance

Cov(Q;,Qx) = VarQ], i<k, (B.8)

which is given by B.6).

By repeating the calculations B(3)-(B.6) up to O(ag), taking into account that
1/\/§Tff°wt6e’t2/2dt =15 and henc&[(& — 1;)®] = 150§, we find, after some algebra, thaarnQi] ~
PE0[1+ 3PEcE + LPeag +O(af)] ~ P P98 _ 1) which is related to the variance of the log-
normal distribution of & P& (Korn & Korn, 2000.
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B.2. Uniformly random array ()

When f = f,, we turn toMatsunawa(1985, who determined the distribution of linear combinatioris o
order statistics drawn fror# (0,1) (i.e. combinations of;, ..., &y, whereé; = €&;) as a mixture of scaled
Beta distributions.

Let us consideg;, i = 1,...,N to be the ordered values from a sampleNofndependent uniformly
distributed random variables d@, 1], whereé; < & for i < j, and also sefp = 0 andén.1 = 1 to account
for the boundary conditions. L&t =& — & _1,i=1,...,N+1 and soVYi,...,Vn+1) has a Dirichlet
distribution with (N + 1)-vector of parametergl, 1,...,1) Matsunawg1985. From the properties of the
Dirichlet distribution we know that

N -1
E[M] = N+ 1’ VarVi] = NT1ZN12) Cov(Vi,Vj) = (NT1Z(N12)’ (B.9)
wherei # j,i,j=1,...,N.
Consider the partlal sums of order statisifes
k p
Ly = Z ijj, Tp = Z CqVq, (B.10)
=1 g=1

wherebj, ¢4 are given deterministic weights. Then, froB.9) and the linearity property of expectation we
have

k
2 bj
z bEN] = = (B.11a)
k k Kk
'zlbjz _lezlbjb|
i= j=1l=
VarlLy] = Z Zb b Cov(Vj, M) = (N+1)(N+2) TINTENTD) (B.11b)
k p
K b 3 2 bica{(N+1)5 -1}
Cov(Ly, Tp) = z b,cq@ov (Vj,Vg) = - qj(N+1)2(N+2) : (B.11c)

wherek, p=1,...,N, k< p anddjq is the Kronecker delta-function.
We now consider expressions for the mean, variance andieocarof the partial sumR, of the order
statistics:

k . k [ p
—125,-;2 k—i+1)Vj, Ro=e 'y &= (P-q+1)Vy, (B.12)
=1 =1
with coefficients of B.10) being
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We also note the following identities foB(13):

K b — k(k+1) X o = k(k+1)(2k+1)
a2 le b 6 ’
(B.14)
K _ k(k+1)(2k+1) k(k+1)(p—k)
=1

Hence, from B.11), (B.12) and B.14), usinge 1 = N + 1, we get the mean, variance and covariance

of Ry:

E[R] =& 'E[Ly] = k(k; D, (B.15a)

VarR(] = e *VarlLy] = Kkt 1)6((2,5 i ;;(N ) _ (Ii[ik]z)z , (B.15b)

Cov(Re, Ro) = £ 2Cov(Li, o) = KK+ 1)6((25 i g(N LS, 1;((,21'(2))('\' U (B1sg)
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