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The transport of a scalar quantity in a disordered medium is a common problem in science and engi-

neering. To understand the interplay between deterministic transport dynamics and stochasticity of the

underlying microstructure, we analyse a simple model for unidirectionaladvection-diffusion-reaction

over a random array of point sinks. The homogenized concentration distribution over a periodic array

provides a leading-order approximation for a wide range of ergodic stationary random sink distributions

of comparable mean density. However the fluctuations about this state depend strongly on the statistical

properties of the array and the relative sizes of the scale-separation parameter (the ratio of mean inter-sink

distance to domain size) and the physical parameters (expressed as dimensionless Ṕeclet and Damk̈ohler

numbers). Using a combination of Monte Carlo simulation and asymptotic analysis, we characterise

the spatial variability and correlation statistics of the transported quantity and show how the underlying

regularity of the microstructure, particularly at low Péclet numbers, ensures a much smaller fluctuation

magnitude than in the case of a uniformly random microstructure. Even when sink locations are almost

uncorrelated to each other, we find that the concentration fluctuations correlate strongly over lengthscales

comparable to the whole domain. Thus boundary conditions can determinethe distributions of both the

averaged leading-order distribution of the transported quantity and its fluctuations.
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1. Introduction

The theory of homogenization is a combination of multiple-scales analysis and averaging techniques that
has been successfully applied to a variety of physical, engineering and biomedical problems since its de-
velopment in the 1970’s byBabŭska(1976), Bakhvalov(1974), Berdichevskii(1975), Keller (1977), Pa-
panicolaou(1975), Sánchez-Palencia(1980) and others. Applications of homogenization are as diverse
as standard equations of mathematical physics with rapidlyoscillating coefficients (on a domain with pe-
riodic microstructure) (Bakhvalov & Panasenko, 1989), wave-propagation in fibre-reinforced poroelastic
media (Parnell & Abrahams, 2008) and the molecular strain energy of DNA (Maddocks, 2004).

The homogenization method provides a convenient analytical tool for obtaining the effective macro-
scopic description of underlying phenomena at fine scales ifa representative periodic structural unit at
these scales can be devised, or if the assumptions of statistical homogeneity and ergodicity can be applied

21 November 2011 c© Institute of Mathematics and its Applications 2011; all rights reserved.



2 of 31 I.L. CHERNYAVSKY, I.L. DRYDEN AND O.E. JENSEN

to the system (Torquato, 2006). The original motivation, and most common application, ofthe homogeniza-
tion method is to the physics of composite materials (Sánchez-Palencia, 1980); here, much effort has been
put into problems of convergence of differential operatorsand functionals in the theory of ordinary and par-
tial differential equations with rapidly oscillating coefficients (Bakhvalov & Panasenko, 1989; Bensoussan
et al., 1978; Zhikov et al., 1979). However, recent interest in biomechanical applicationshas unveiled new
opportunities for averaging and homogenization approaches (Chapmanet al., 2008; Chernyavskyet al.,
2011; Shipley & Chapman, 2010; Woodet al., 2002).

Homogenization techniques for media with periodic microstructure were pioneered byMaxwell (1873)
andRayleigh(1892). Since then, the effective properties of a medium with respect to heat or mass transport
have been derived for a variety of transport regimes and medium compositions (Batchelor & O’Brien,
1977; Keller, 1963; Sangani & Acrivos, 1983). These are typically parametrised by a Péclet number Pe
(representing the relative strength of advection to diffusion), a Damk̈ohler number Da (representing the
relative rate of a reaction to diffusion) and a scale-separation parameterε ≪ 1 (the ratio of microscopic
to macroscopic lengthscales). Sangani, Acrivos and co-authors studied by a hybrid numerical-analytical
approach the effect of flow at low Pe (Acrivos et al., 1980; Sangani & Acrivos, 1982) and high Pe (Wang
& Sangani, 1997) on heat transport at fixed heat-exchange rate or fixed temperature of heated spheres and
cylinders arranged in periodic or random arrays.Auriault & Adler (1995) classified parameter regimes for
two-dimensional advective-diffusive transport without reaction (Da= 0). Mauri (1991) considered several
different scalings of Pe and Da for first-order irreversiblereaction kinetics in a periodic porous medium
and obtained the corresponding effective equations. More recently,Mikeli ć et al. (2006) andAllaire &
Raphael(2007) provided rigorous estimates for convergence of the homogenised solutions to an advection-
diffusion-reaction problem at large macroscopic Pe and Da.Figure1(a) illustrates how these authors have
contributed descriptions of different asymptotic transport regimes across (Pe, Da) parameter space, in the
context of one-dimensional transport via advection and diffusion past a periodic array of sinks with zeroth-
order kinetics. This Figure also illustrates typical distinct asymptotic regimes in parameter space within
which different physical effects dominate (derived inChernyavskyet al., 2011, hereafter referred to as
CLDJ).

The stochastic homogenization method ofBensoussanet al.(1978) was proposed almost simultaneously
with the development of the theory of homogenization for periodic structures. In the case of statistically
homogeneous and ergodic microstructure, virtually all results for periodic porous media are directly ap-
plicable andvice versa(Torquato, 2006). The effective advective-diffusive transport in random flow fields
was shown to have many similarities with transport in a periodic velocity field (McCarty & Horsthemke,
1988; McLaughlinet al., 1985). In parallel with the homogenization technique, several statistical (Hashin
& Shtrikman, 1962; Prager, 1963) and analytical (Bergman, 1980; Milton, 1981) methods for identifying
rigorous bounds of effective material properties have beendeveloped. In particular, then-point correlation
(probability) function formalism of Torquato and co-authors has assisted calculation of geometry-specific
bounds (Torquato, 1991). Using the framework of generalised Taylor dispersion,Shapiro & Brenner(1988)
calculated effective parameters of an advection-diffusion-reaction equation for first-order kinetics by study-
ing the properties of statistical averages (moments) of a solute “Brownian particle” introduced into a spa-
tially periodic porous medium. The volume averaging methodby Whitaker and others (Whitaker, 1967;
Zolotarev & Radushkevich, 1968) was recently applied to find effective nonlinear Michaelis–Menten-type
reaction-diffusion equations in biofilms (Woodet al., 2002). Meanwhile recent advances in stochastic ge-
ometry and meso-scale homogenization have allowed the development of time-dependent growth models
(for applications such as a growing network of blood vessels), where global scalar fields of the medium
affect the geometry of the microstructure and vice versa, providing a feedback loop across different length-
scales (Capasso, 2009); for more detailed recent reviews of homogenization and other effective description
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Figure 1. (a) A schematic representation of(Pe, Da)-parameter ranges considered in previous studies
of homogenized advection-diffusion-reaction problems. Parameter ranges addressed by previous authors
(shaded grey regions and grey circles) have been “projected” on the (Pe, Da)-parameter space derived in
CLDJ for one-dimensional transport past a periodic array ofsinks with constant uptake. (Damköhler and
Péclet numbers are defined on the local inter-sink distance.)Solid lines demarcate six distinct asymptotic
regimes: uptake-dominated (UD, UA , Us

A), diffusion-dominated (D) and advection-dominated (A, As). Pe-
ripheral shaded areas represent the limits Pe→ 0 (left), Pe→ ∞ (right), and Da→ 0 (bottom). (b) Leading-
order homogenized solutionsC(0) for representative points (1)-(4) in the parameter space (Pe= 1,ε2,ε2,1
and Da= ε0.6,2ε2,ε3,ε1.4 respectively) and the exact solutionC for the point (5) (Pe= ε−1, Da= 1), il-
lustrating a “staircase” structure, are plotted across thespatial domain 0< X < 1, computed withε = 0.05;
circles show the locations of the 19 sinks (CLDJ).

techniques, seeChernyavsky(2011), Parnell & Abrahams(2012).
Key features of the transported scalar field over a periodic distribution of sinks are summarised in Fig-

ure1 (adapted from CLDJ). Diffusive, advective and uptake fluxesacross the whole domain balance when
Da= O(ε2), Pe= O(ε), defining an organising centre in(Pe,Da)-parameter space (see Fig.1a). A second
organising centre at Pe= O(1), Da= O(ε) characterises the balance of advection and diffusion at theinter-
sink scale, while advective and uptake fluxes remain balanced at the scale of entire domain. Radiating from
the organising centres are the lines that bound asymptotic domains; within each domain a single physical
effect typically dominates at the macroscopic lengthscale, although additional effects become important
within internal boundary layers at smaller scales (as illustrated in Fig.1b). Asymptotic analysis for other
types of reaction kinetics (see AppendixA) indicates that the layout of the asymptotic domains in(Pe, Da)-
space (Fig.1a) remains broadly similar, although the specific functional form of the solution profile differs
(cf. Figs1(b) andA.1). As indicated above, the map of asymptotic domains appliesalso when sinks are dis-
tributed randomly (CLDJ). However the parameter ranges within which the homogenization approximation
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is valid are sensitive to sink distributions, as we discuss further below.
In transport problems involving stochastic geometries, when the problem is posed in terms of statisti-

cal distributions, the classical homogenized solution provides information regarding the mean properties of
a transported field but not the statistical properties of thefluctuations about the mean that will arise in a
particular realisation of the problem. The fluctuations areimportant in understanding the accuracy of the
homogenized solution across parameter space as well as being of practical significance in certain applica-
tions. Here, we estimate the properties of fluctuations in the context of the simple problem illustrated in
Figure1(b), which was motivated by maternal blood flow in the human placenta (CLDJ), involving transport
via advection and diffusion past a distribution of sinks, when the sink locations have prescribed statistical
properties (§ 2). In the first instance, numerical Monte-Carlo simulation enables us to compute the prop-
erties of fluctuations directly; the fluctuations show striking multiscale behaviour, such that the covariance
varies smoothly over macroscopic lengthscales under the influence of boundary conditions. We analyse this
behaviour (§ 3) by exploiting the linearity of the governing PDE, which enables the solute concentration
field to be expressed as a functional of the sink locations (although this functional is, for most parameter
regimes, nonlinear). Then, for a given statistical sink distribution, we approximate the statistical properties
of the fluctuations by exploiting the multiscale nature of the problem. Our non-standard approach was in-
troduced in CLDJ for the case of linear functionals; here we extend it into the nonlinear regime in some
special cases, enabling us to provide convergence estimates across parameter space (§ 4).

2. Problem statement

Consider a one-dimensional array ofN identical point sinks of constant strengthq0. The size of the domain
is L, and l is the distance between two adjacent sinks (l ≪ L, L = (N + 1)l ). Solute is carried past the
sinks by a unidirectional flow fieldu0, assumed to be uniform over the domain (as if driven by a constant
pressure drop according to Darcy’s law); the solute concentration C0 at the inlet (x∗ = 0) is prescribed,
and the concentration at the outlet (x∗ = L) is set to be zero. The solute diffuses between the sinks with
diffusivity D. The concentration fieldC∗(x∗) is required to be non-negative, and therefore, for sufficiently
strong uptake, we define an internal free boundary atx∗ = x∗0 such thatC∗ > 0 for 0< x∗ < x∗0, andC∗ = 0
for x∗0 < x∗ < L.

Introducing non-dimensional variablesC∗ = C0C, x∗ = l x, x∗0 = l x0, we write the advection-diffusion-
uptake problem for the solute in dimensionless form (as in CLDJ) as

d2C
dx2 −Pe

dC
dx

= Da f (x) , f =
N

∑
i=1

δ (x−ξi), 0 < x < ε−1,

C|x=0 = 1, C|x=ε−1 = 0 or C|x=x0 =
dC
dx

∣

∣

∣

∣

x=x0

= 0,

(2.1)

whereξi denotes the position of theith sink (i = 1, . . . ,N), as illustrated in Figure2, ε = l/L and Pe= u0 l/D
and Da= q0 l/(DC0) are the microscopic Ṕeclet and Damk̈ohler numbers respectively.

A global balance of diffusive, advective and uptake fluxes (in dimensional variables)DC0/L ∼ u0C0 ∼
ε−1q0, identifies the organising centre 1∼ ε−1Pe∼ ε−2Da in (Pe, Da)-parameter space (CLDJ). We look
for an approximate solution to (2.1) about this point (with Pe= ε p, Da= ε2q and p,q = O(1)) in the
form of a two-scale asymptotic power series

C≡Cε(X) = C(0)(x,X)+ ε C(1)(x,X)+ ε2C(2)(x,X)+ . . . , X = ε x. (2.2)
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Figure 2. A schematic random array ofN sinks (circles), located atx = ξi ; ticks indicate the position of
sinks in a periodic array of the same size (all variables are given in a dimensionless form).

Treating short and long-range spatial variablesx andX as independent, the differential operators change
accordingly:

d
dx

=
∂
∂ x

+ ε
∂

∂ X
,

d2

dx2 =
∂ 2

∂x2 +2ε
∂ 2

∂x∂X
+ ε2 ∂ 2

∂X2 . (2.3)

Substituting (2.2) and (2.3) into (2.1), collecting terms in powers ofε, assumingx-periodicity (i.e.ξi = i
in (2.1)) and averaging over a unit cell, we get the leading-order solution to (2.1), given by CLDJ as

C(0)(X) =































(

q
p −1

) epX−1
ep−1

− q
p X +1, 0 6 X 6 1, for q 6 Q(p)

q
p2

epX−1

epX0
− q

p X +1, 0 6 X 6 X0,

0, X0 < X 6 1,

for q > Q(p)

(2.4a)

where

Q(p) =
p2ep

(p−1)ep +1
, X0 = − 1

p e−pX0 + q+p2

pq , (0 < X0 6 1) . (2.4b)

Note that forq = p (Da = εPe), expression (2.4) simplifies to the linear functionC(0) ≡ 1−X, greatly
facilitating calculations. Since an ergodic and spatiallyuniform (stationary) random medium has the same
leading-order behaviour as the equivalent periodic mediumof the same average density (Torquato, 2006),
we can use (2.4) to provide a leading-order estimate of the concentration field when the sinks are distributed
either periodically or randomly (in the limitε → 0). Following Pavliotis & Stuart(2008), we can then
compute the fluctuations about the mean in the form of thehomogenization residue, defined as

rε(X) = C−C(0) . (2.5)

We consider different types of irregular arrays in order to understand the accuracy of the homogenization
description in these cases. Since we deal with point objects, it is convenient to employ standard random
point processes to construct sink distributions. A naturalchoice is to use auniformly randomdistribution
of N sinks in the open intervalX ∈ (0,1) (see representative realisations of the solutionC in Fig. 3(a) for
N = 49 and the homogenization residuerε in Fig. 3(c) for N = 1019 at large Ṕeclet number; Fig.4(a,b)
shows analogous quantities at small Pe). Another natural random distribution to consider is the normal
perturbation of a periodic array (also callednormal perturbations), where each sink is displaced normally
(with a given standard deviationσ on theX-scale) about its position in a periodic array (representative
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Figure 3. Simulation (solid) compared toC(0) (dashed) for (a) uniformly random and (b) normally-
perturbed periodic (σ = 10ε) sink distributions, forN = 49 sinks (ε = 0.02), Pe= 10 and Da= εPe.
Sinks for these realisations are shown with circles. (c,d) Asingle realisation of the homogenization residue
rε = C−C(0) (solid) scaled byε−1/2, corresponding to (a,b) forε = 0.001 (other parameters as in (a,b)).
The dashed line shows the pointwise ensemble meanE[rε ] and dotted lines show mean± two standard
deviationsVar[rε ]1/2, both computed fromNens= 1000 Monte-Carlo samples.

realisations are shown in Fig.3(b,d) for large and in Fig.4(b,d) for small Pe). According to the properties
of a normal distribution, we expect 99% of sinks to remain in their original unit cells for 06 σ 6 ε/6. Asσ
increases, the sinks start swapping their unit cells and sorting of their new positions has to be applied. In the
limit of small standard deviations (σ → 0), the normally-perturbed array tends to an unperturbed periodic
array, and a normally-perturbed array approaches a uniformly random distribution asσ/ε becomes≫ 1
(with periodic boundary conditions imposed upon sinks falling outside the domain). Therefore, we consider
two stochastic forms of the source termf in (2.1):

(i) f = fu: a uniformly-random distribution, whereξi are independent ordered values drawn fromU [0,ε−1];

(ii) f = fn(σ): a normally-perturbed periodic distribution satisfyingξi ∼ N (i,σ2
0), for some
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varianceσ2
0 ≡ (σ/ε)2.

In order to assess the magnitude of the difference (2.5) between the homogenizedC(0)(X) and exactC
solutions to the original problem (2.1), we define the following deterministic measures for a single realisa-
tion of rε :

‖rε‖C = max
X∈[0,1]

|rε | , ‖rε‖2
L2

=
∫ 1

0
(rε)2dX , ‖rε‖2

H1 = ‖rε‖2
L2

+

∥

∥

∥

∥

drε

dX

∥

∥

∥

∥

2

L2

. (2.6)

These are, respectively, the supremum (Chebyshev), mean-squared (L2) and Sobolev (H1) norms.
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The modes of convergence ofC to C(0) defined in (2.6) are arranged in the descending order with
respect to their “strength” (except for the Sobolev norm), e.g. ‖rε‖C → 0 asε → 0 implies the convergence
of ‖rε‖L2, while the converse is generally not true. Convergence in the Sobolev norm, which takes account
of the first derivative, is stronger than convergence in the mean-squared norm in a sense that‖ · ‖L2 6 ‖ · ‖H1

(see, e.g.Pavliotis & Stuart(2008) for a more systematic discussion).

3. Correlation properties of the homogenization residue

Panels (c,d) in Figs3 and4 summarise the statistical properties of the homogenization residuerε by plot-
ting an individual realisation ofrε (X) (solid line) together with a pointwise 95%-confidence interval (±2
standard errors SE=(Var[rε ]/Nens)

1/2; dotted lines) and the pointwise ensemble meanE[rε ] (dashed lines)
computed via Monte-Carlo simulations of (2.1) for an ensemble ofNensrealisations. We note a very differ-
ent spatial structure of the residue forfn (Fig. 3d) as compared tofu (Fig. 3c) at large Pe (CLDJ); moreover,
despite a more “smooth” appearance of fluctuations at small Pe, their magnitude in the case offu (Fig. 4c)
is much larger (over 20-fold forσ = 0.5ε, Pe= ε2, ε = 0.01) than forfn (Fig. 4d).

To study the spatial correlation of the homogenization residuerε in more detail, in addition to pointwise
varianceVar[rε(X)] and covarianceCov(rε(X), rε(Y)), we adopt thetransverse covariance

CovT(rε) ≡ Cov(rε(X), rε(1−X)) = E
[

( rε(X)−E[rε(X)] )( rε(1−X)−E[rε(1−X)] )
]

, (3.1)

which characterises to some degree how fluctuations are correlated across the domain.

3.1. Numerical estimates of the covariance of the homogenization residue

Covariance matrices for the fluctuations in solute concentration about the mean at small Pe, computed on a
uniformly random array (Fig.5c) and on a normally-perturbed periodic array (Fig.5d), show a prominent
cloud about the main diagonal, giving evidence for long-range spatial correlations (illustrated by the point-
wise variance and transverse covariance distributions in Figs 5(a) and5(b) respectively, analogues of the
confidence intervals in Fig.4(c,d)). The computed variances and transverse covariancesfor fu, fn are in a
good agreement with theoretical predictions, which will beobtained below.

In addition to the advection-dominated case (Pe≫ 1), illustrated in Fig.3 (see also Fig. 4 of CLDJ), we
further investigate the correlation properties by considering the case when advection and diffusion balance
over the inter-sink distance (Pe= O(1)): illustrated in Figure6. For the normally-perturbed distributionfn
we observe a marked advection-induced drop in the transverse covariance (Fig.6b) and a very narrow band
about the main diagonal of the covariance matrix (Fig.6d), indicating a greater independence of each unit
cell in the case offn as compared tofu. The variance, like the pointwise standard deviation in Fig. 4(d), is
uniform across the domain (outside the boundary layers atX = 0, 1) for fn but varies much more smoothly
for fu (Fig.6(a,c)). It is also of interest to note the negative correlation (or “anti-correlation”) in fluctuations
at the points symmetrical about the centre of the array and close to the boundaries forfu (Fig.5a) but not for
fn (Fig. 5b) at small Pe. As Ṕeclet number increases, however, this feature gradually disappears (Fig.6a).

It is also interesting to highlight that the parabolic variance and transverse covariance of the residue for
a normally-perturbed array at small Pe (Fig.5b) closely resemble the shape ofVar[rε ] andCovT[rε ] for
a uniformly-random array for moderate-to-large Pe (Fig.6(a) and Fig. 4(d,e) of CLDJ); In the following
Sections, we seek to explore analytically how features suchas the boundary layers in Fig.6(b), indicated
by Monte-Carlo simulations, arise from the interaction of deterministic and stochastic factors in transport
past an array of sinks. Motivated by the structure of parameter space (Fig.1a), we consider the structure of
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normally-perturbed (b,d) periodic array at small Péclet number (Pe= ε2, Da= εPe, ε = 0.01). (a,b) Spa-
tial distribution of the pointwise varianceVar[rε ] (circles) and transverse covarianceCov(rε(X), rε(1−X))
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(a) and (3.13) and (3.14) for normally-perturbed array withσ0 ≡ σ/ε = 0.5 (scaled by(ε3q2 σ2

0 )−1 ) (b).
(c,d) Covariance matrixCov(rε(X), rε(Y)) corresponding to (a,b), computed at 100 equispaced points and
scaled by 1/(εq2) (q = ε−2Da).

multiscale fluctuations of the residuerε at the two organising centres: (i) Pe= O(ε), Da= O(ε2) in § 3.2
and (ii) Pe= O(1), Da= O(ε) in § 3.3.
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Figure 6. Statistical properties of the homogenization residue for a uniformly random (a,c) and
normally-perturbed (withσ = 0.5ε) (b,d) periodic array at moderate Péclet number (Pe= 1, Da= εPe,
ε = 0.01). (a,b) Spatial distribution of the pointwise varianceVar[rε ] (circles) and transverse covari-
anceCovT(rε) (diamonds); dashed lines in (b) indicate theoretical predictions (3.36) and (3.37) scaled by
(ε q1 σ0)

−2 (q1 = ε−1Da). (c,d) Covariance matrixCov(rε(X), rε(Y)) corresponding to (a,b) (computed
at 100 equispaced points, using 5×104 realisations; all plots except for (b) are scaled byε−1).

3.2. Analytical estimates of covariance forPe= O(ε), Da= O(ε2) (diffusion-dominated at the inter-sink
scale)

We start by briefly recalling (and also extending) the methodintroduced in CLDJ for finding a correction to
the leading order solutionC(0) in the case of uniformly-random or normally-perturbed sinkdistributions for
Pe= O(ε), Da= O(ε2) (again writing Pe= ε p and Da= ε2q). By using the statistical properties of these
distributions and an exact solution for a cell problem, we can estimate analytically the mean and covariance
of the homogenization residue.

When sinks are distributed non-periodically we can derive the homogenized approximation of (2.1) as
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follows. We initially use (2.2) to rewrite (2.1) as

Cxx+2εCxX + ε2CXX− ε p(Cx + εCX) = ε2q f, (0 < x < ε−1, 0 < X < 1),

C|X=0 = 1, C|X=1 = 0.
(3.2)

(assuming here for brevity thatC does not fall to zero upstream ofX = 1). We allowC(1), C(2), . . . to
have fluctuations, assuming that these are not large enough to disrupt the proposed expansion. At leading

order,C(0)
xx = 0, C(0)|X=0 = 1 andC(0)|X=1 = 0. ThusC(0)(x,X) = Ã(X)x+ B̃(X). The first term must be

suppressed to avoid secular growth, so thatC(0) = C(0)(X). Likewise at the following order we find that
C(1) = C(1)(X). Collecting the terms in (3.2) atO(ε2), we obtain

C(2)
xx = q( f −F), where qF(X) ≡C(0)

XX− pC(0)
X , (3.3)

with f =
N
∑

i=1
δ (x− ξi). This is to be solved subject toC(1) = C(2) = 0 at x = 0 andx = ε−1. Thus in

ξi < x < ξi+1 (i = 0,1, . . . ,N), treatingx andX as independent and assumingF is independent ofi to
leading order (verifieda posteriori), we have

C(2) = −1
2qF(x−ξi)

2 +αi(x−ξi)+βi (3.4)

for someαi , βi , takingξ0 = 0 andξN+1 = ε−1.
Using the diffusive-uptake flux balance in (3.3) at each sink and applying the global boundary conditions

C(2)|x=0 = C(2)|x=ε−1 = 0, we can derive recurrence relations forαi andβi , which after some manipulation,
lead to the explicit expression (see Appendix B in CLDJ for more detail)

C(2) = 1
2qF x(ε−1−x)+q[(ε xRN −Ri)+x(i −N)] , i = 1,2, . . . ,N for ξi < x < ξi+1 , (3.5)

where
Ri =

i

∑
j=1

ξ j (3.6)

is a linear functional (partial sum) of the random sink positions. Expression (3.5) thus relates solute fluctu-
ations directly to sink distributions.

We note that all terms exceptεxRN −Ri ≡ XRN −Ri (settingx = X/ε) in (3.5) are deterministic, and
therefore

C(2)−E[C(2)] = q(XR̊N − R̊i) , (3.7)

whereR̊i ≡ Ri −E[Ri ], andi ∈ {1, . . . ,N} satisfiesξi < x < ξi+1.
Likewise Cov(C(2)(X),C(2)(Y)) = q2

Cov
(

XRN −Ri , YRN −Rk)
)

, (where i,k∈ {1, . . . ,N} satisfies
i = ⌊ε−1X⌋, k = ⌊ε−1Y⌋), so that

Cov(C(2)(X),C(2)(1−X)) ≃ q2
Cov

(

XRN −Ri , (1−X)RN −RN−i
)

. (3.8)

The choice ofN− i instead ofN +1− i does not affect the results at leading-order, owing to largeN ≫ 1
and the smoothX-dependence of the variance and the transverse covariance,as will be shown below.
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Thus, by applying the definition (3.1) to (3.7) and (3.8), the variance and the transverse covariance of
the correction are expressed in terms of the partial sumsRi (3.6) for i = ⌊ε−1X⌋ as follows:

Var[C(2)] = q2
E
[

(XR̊N − R̊i)
2]= q2{X2

Var[RN]−2XCov(Ri ,RN)+Var[Ri ]
}

, (3.9a)

CovT[C(2)] = q2
E
[

{XR̊N − R̊i}{(1−X)R̊N − R̊N−i}
]

= (3.9b)

= q2{X(1−X)Var[RN]− (1−X)Cov(Ri ,RN)−XCov(RN−i ,RN)+

+Cov(Ri ,RN−i)
}

.

Our task therefore reduces to finding the corresponding variances and covariances of the partial sums
Ri (3.6) for specific sink distributions.

3.2.1. Normally-perturbed sinks

Recall whenf = fn, we haveξi ∼ N (i, σ2
0 ). From (B.1) and (B.2), given in AppendixB, the mean,

variance and covariance ofRi can be expressed as

E[Ri ] =
i(i +1)

2
, Var[Ri ] = Cov(Ri ,Rk) = i σ2

0 , (i 6 k) , (3.10)

and thus (3.9) simplifies to

Var[C(2)] = q2{X2
Var[RN]+ (1−2X)Var[Ri ]

}

, (X < 1, i = ⌊ε−1X⌋ 6 N) , (3.11a)

CovT[C(2)] = q2{X(1−X)Var[RN]+X Var[Ri ]−X Var[RN−i ]
}

, (X < 1
2, i 6 N

2 ) . (3.11b)

By settingi = (i −x)+ ε−1X andN = ε−1−1, we obtain from (3.10), E[XRN−Ri ] = ε−2 1
2X(1−X)−

1
2(x+ i)(i +1−x). Substituting this into (3.5), we get an expectation of the correction in the case of normal
perturbations (CLDJ):

E(C(2)) = ε−2 1
2 q(F −1)X(1−X) + 1

2 q(x− i)(i +1−x). (3.12)

To ensure the original expansion is asymptotic, we must takeF = 1 at O(ε−2), yielding from (3.3) the
leading-order equation forC(0) and recovering the parabolic cell solution obtained in CLDJfor a periodic
array. Simulations indicate that the contribution atO(ε−1) (and henceC(1)) vanishes; however, a further
correction toE[rε ] of the order ofε2 is present, presumably involving a closure condition for the correction
at higher order.

Substituting the variance and covariance of the partial sums Ri (3.10) into (3.11), settingi = ε−1X + γ
(γ ≡ i −x = O(1)) andN = ε−1 − 1, and retaining the leading-order term in powers ofε, we find, after
some algebra, that (3.11a) gives, for the variance (CLDJ),

Var[C(2)] = ε−1q2 σ2
0 X(1−X)+O(1), (3.13)
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and using (3.11b) for 06 X 6 1
2, i 6 N− i (owing to the symmetry of the covariance) gives, for the trans-

verse covariance (not reported previously),

CovT[C(2)] =







ε−1q2 σ2
0 X2 +O(1), 0 6 X 6 1

2 ,

ε−1q2 σ2
0 (1−X)2 +O(1), 1

2 < X 6 1,
(3.14)

in a good agreement with simulations (Fig.5b). From (2.6), (3.12) and (3.13), we have‖E[C(2)]‖C =
1
8 q, ‖E[C(2)]‖L2 =

√
30

60 q, ‖E[C(2)]‖H1 =
√

3
6 ε−1q

√

1+ 1
10ε2, (where we integrate over(i, i + 1) and

use d/dX = ε−1d/dx), and‖Var[C(2)]‖C ≈ 1
4 ε−1q2 σ2

0 , ‖Var[C(2)]‖L2 ≈
√

30
30 ε−1q2 σ2

0 , ‖Var[C(2)]‖H1 ≈√
330
30 ε−1q2 σ2

0 , so that‖ · ‖L2 6 ‖ · ‖C 6 ‖ · ‖H1, as expected. We estimate the magnitude of the homoge-
nization residue as

‖rε‖ ≈ ε2
(

‖E[C(2)]‖ + ‖Var[C(2)]‖1/2
)

, (3.15)

for each of these norms, and hence

‖rε‖C = ‖rε‖L2 = O(qσ0 ε3/2), ‖rε‖H1 = O(qε) . (3.16)

Thus whileC(2) hasO(1) mean,rε is dominated by fluctuations of relative magnitudeO(ε3/2); however
the gradients inE[rε ] are larger than the fluctuations about the mean (the large gradients at the inter-sink
scale ofC(2), which contribute to slower convergence in the Sobolev normthan in the mean-squared norm,
are illustrated in Fig.4d). This approximation holds as long as sinks do not exchangeplaces, which can
be expected onceσ0 becomes sufficiently large. BecauseVar[C(2)] scales withσ0, (3.13) suggests that the
fluctuations in the case of stronger mixing of perturbed sinklocations will be larger thanO(ε3/2).

3.2.2. Uniformly random sinks

For f = fu, the sinks form order statistics with the inter-sink distances obeying a Dirichlet distribution of
dimensionN+1 (Matsunawa, 1985) (see AppendixB for more detail).

From the properties of the linear combination of the order statistics (B.15), we have

Var[Ri ] =
i(i +1)(2i +1)(N+1)

6(N+2)
− (E[Ri ])

2

N+2
, E[Ri ] =

i(i +1)

2
, (3.17a)

Cov(Ri ,Rk) =
i(i +1)(2i +1)(N+1)

6(N+2)
+

i(i +1)(k− i)(N+1)

2(N+2)
− E[Ri ]E[Rk]

N+2
, i 6 k. (3.17b)

Substituting (3.17) into (3.9) and again writingi = ε−1X +(i − x) (taking |i −x| = O(1)), we find to
leading order inε (using Maple) explicit expressions for the variance (as in CLDJ) and the transverse
covariance (which has not been reported previously) of the correction in the case of a uniformly random
sink distribution:

Var[C(2)] = ε−3q2 1
12 X2 (1−X)2 + O(ε−2), (3.18)
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CovT[C(2)] =







−ε−3q2 1
12 X2 (1−6X +7X2) + O(ε−2), 0 6 X 6 1

2 ,

−ε−3q2 1
12 (1−X)2 (2−8X +7X2) + O(ε−2), 1

2 < X 6 1,
(3.19)

which are in a good agreement with numerical solutions shownin Figure5(a).
From (2.6) and (3.18), we find‖Var[C(2)]‖C ≈ 1

192ε−3q2, ‖Var[C(2)]‖L2 ≈
√

70
2520ε−3q2, ‖Var[C(2)]‖H1 ≈√

910
2520 ε−3q2, (with ‖E[C(2)]‖C = ‖E[C(2)]‖L2 = O(q), ‖E[C(2)]‖H1 = O(ε−1q), as for thefn distribution).
Therefore, using (3.15), we have

‖rε‖C = ‖rε‖L2 = ‖rε‖H1 = O(qε1/2). (3.20)

The fluctuations aboutC(0) are thusO(ε1/2), which is significantly larger than theO(ε2) error for the
magnitude of homogenization on periodic arrays (CLDJ), andthey even dominateO(ε) contribution of the
gradients in the mean (periodic) component ofrε . (Fig.4(c,d) shows how the homogenization residue with
f = fu varies more smoothly at the inter-sink scale than the residue with f = fn.)

We complete the analysis by considering the fluctuations in ahomogenization residue about the second
organising centre Pe= O(1), Da= O(ε).

3.3. Analytical estimates of covariance forPe= O(1), Da= O(ε) (balanced advection-diffusion at the
inter-sink scale)

It remains to establish the statistical properties of the homogenization residue in the case of moderate-to-
large local Ṕeclet numbers Pe= O(1), Da= O(ε) = εq1, q1 = O(1)), when (2.1) transforms to the following
problem:

Cxx+2εCxX + ε2CXX−Pe(Cx + εCX) = εq1 f , f =
N

∑
i=1

δ (x−ξi)

C|X=0 = 1, C|X=1 = 0

(3.21)

(again assuming here, without loss of generality, thatC does not fall to zero upstream ofX = 1). At O(1),

we getC(0)
xx −PeC(0)

x = 0, C(0)|X=0 = 1 andC(0)|X=1 = 0. ThusC(0)(x,X) = ã(X)ePex+ b̃(X), ã, b̃ being
arbitrary constants ofX. The first term must be suppressed to avoid secular growth (sincex = ε−1 → ∞ as
ε → 0), so that againC(0) = C(0)(X).

Collecting the terms in (3.21) atO(ε), we obtain

C(1)
xx −PeC(1)

x = q1( f (x)−F(X)), where q1F(X) ≡−PeC(0)
X . (3.22)

This is to be solved between each pair of sinksξi andξi+1 (i = 0, . . . ,N, taking againξ0 = 0 andξN+1 =
ε−1), subject toC(1) = 0 atx = 0 andx = ε−1. Thus

C(2) = q1
PeF(x−ξi)+ α̃ie

Pe(x−ξi) + β̃i , ξi < x < ξi+1 for i = 0, . . . ,N , (3.23)

with someα̃i , β̃i to be determined.
Integrating (3.22) acrossx = ξi gives the balance of concentrations and fluxes:C(1)|ξi+ = C(1)|ξi− and

C(1)
x |ξi+ −C(1)

x |ξi− = q1, which (using (3.23) for ξi < x < ξi+1 andξi−1 < x < ξi) allows us to obtain the
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following recurrence relations:

α̃i = α̃i−1ePe∆i + q1
Pe, (3.24a)

β̃i = β̃i−1 + q1
Pe(F ∆i −1) , (3.24b)

where∆i = ξi −ξi−1, for i = 1,2, . . . ,N.
Summing (3.24b), taking the product of (3.24a) for j = 1,2, . . . , i, and assuming thatF is independent

of i to leading order, we find

α̃i =ePeξi
(

α̃0 + q1
Pe

i
∑
j=1

e−Peξ j
)

, (3.25a)

β̃i =β̃0 + q1
Pe(F ξi − i) , (3.25b)

using the identity∑i
j=1 ∆ j ≡ ξi .

We define

Qi ≡
i

∑
j=1

e−Peξ j (3.26)

and substitute (3.25) into (3.23) to find

C(1) = q1
Pe(Fx− i)+

(

α̃0 + q1
PeQi

)

ePex
+ β̃0 ξi < x < ξi+1, i = 0, . . . ,N . (3.27)

ImposingC(2) = 0 atx = 0 (i = 0) andx = ε−1 (i = N) to satisfy the global boundary conditions, gives

α̃0 = −β̃0 = − q1
Pe[Fε−1−N+QN ePeε−1

]/(ePeε−1
−1), and so, after some algebra, we obtain

C(1) =
q1

Pe

[

(Fx− i)− (Fε−1−N)
ePex−1

ePe/ε −1

]

− (3.28)

− q1/Pe

1−e−Pe/ε

[

(ePex−1)QN −ePex
(1−e−Pe/ε

)Qi

]

, ξi < x < ξi+1, i = 0, . . . ,N.

This expression again relates solute fluctuations directlyto sink distributions and is the analogue of (3.5).
Analogously to§ 3.2, we observe that the statistical properties of the correction C(1), and thus the

homogenization residuerε ≈C−C(1), are entirely defined by the combination of exponential partial sums
Qi andQN in the second term of (3.28). Therefore (settingx = X/ε) in (3.5), we have

C(1) −E[C(1)] = − q1/Pe

1−e−Pe/ε

[

(ePeX/ε −1)Q̊N −ePeX/ε
(1−e−Pe/ε

)Q̊i

]

, (3.29)

whereQ̊i ≡ Qi −E[Qi ], i = 1, . . . ,N.
Applying the definition of variance and transverse covariance (3.1) to (3.29), expanding and taking the

expectation, we expressVar[C(1)] andCovT[C(1)] in terms of the partial sumsQi of a sink distributionξi as
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follows:

Var[C(1)] =

(

q1/Pe

1−e−Pe/ε

)2

E

[

{

(ePeX/ε −1)Q̊N −ePeX/ε
(1−e−Pe/ε

)Q̊i

}2
]

=

(

q1/Pe

1−e−Pe/ε

)2
{

(

ePeX/ε −1
)2

Var[QN] − (3.30)

−2ePeX/ε
(

ePeX/ε −1
)(

1−e−Pe/ε
)

Cov(Qi ,QN) +e2PeX/ε
(

1−e−Pe/ε
)2

Var[Qi ]

}

,

CovT[C(1)] =
(

q1
η Pe

)2
E

[

{

(ePeX/ε −1)Q̊N −η ePeX/ε Q̊i

}

{

(ePe(1−X)/ε −1)Q̊N −η ePe(1−X)/ε Q̊N−i

}

]

=

=
(

q1
η Pe

)2
{

(

1−ePeX/ε −ePe(1−X)/ε
+ePe/ε

)

Var[QN] + (3.31)

+η
(

ePeX/ε −ePe/ε
)

Cov(Qi ,QN)+η
(

ePe(1−X)/ε −ePe/ε
)

Cov(QN−i ,QN) +

+η2ePe/ε
Cov(Qi ,QN−i)

}

,

whereη ≡ 1−e−Pe/ε .
Our task once again to find the corresponding variances and covariances of the partial sumQi for a

specific sink distribution. However, in this case, the functional of the sink distribution (3.26) becomes
nonlinear (cf. (3.6)) despite the linearity of the original problem (2.1). We pursue this task for normally-
perturbed sinks, leaving the uniformly random case for a future study.

3.3.1. Normally-perturbed sink distribution

Considerf = fn, ξi ∼ N (i,σ2
0). Forσ0 ≡ σ/ε ≪ 1 and Pe not too large, we can assumeg(ξi) ≡ e−Peξi

has an approximately normal distribution, so that expanding it about the mean sink locationµi = i, we have

g(µi +(ξi −µi)) ≈ gi +g′i (ξi −µi)+ 1
2 g′′i (ξi −µi)

2 + . . . , gi ≡ g(µi) . (3.32)

We then compute the approximate mean and variance ofg(µi)

E[g(µi +(ξi −µi))] ≈ gi +
1
2 g′′i Var[ξi ]+

1
24 g′′′′i E[(ξi −µi)

4]+ . . . , (3.33a)

Var[g(ξi)] ≡ E[g(ξi)
2]− (E[g(ξi)])

2 , (3.33b)
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which, using the moments of the normally-distributedξi , reduces (see AppendixB) to

Var[g(ξi)] ≈ Pe2σ2
0

[

1+ 3
2 Pe2σ2

0

]

e−2Pei
. (3.34)

The partial sum (3.26) can be equivalently rewritten asQi ≡ ∑i
j=1g(ξ j), and owing to the independence

of sink positions (at sufficiently smallσ0; see (B.7) in AppendixB for details), the covariance and variance
of Qi are given by

Cov(Qi ,Qk) = Var[Qi ] =
i

∑
j=1

Var[g(ξ j)] ≈ Pe2σ2
0

[

1+ 3
2 Pe2σ2

0

] 1−e−2Pei

e2Pe−1
, i 6 k. (3.35)

Substituting (3.35), i ∼ ε−1X andN ∼ ε−1 into (3.30) and (3.31), after some algebra, we find

Var[C(1)] ≈ 2q2
1 σ2

0 (1+ 3
2 σ2

0 Pe2 )

(

e
Pe
ε X +e

Pe
ε (1−X)−e

Pe
ε (1+X)−e

Pe
ε (2−X) +e2Pe

ε −1
)

(

e2Pe−1
)

(e
Pe
ε −1)2

, (3.36)

CovT[C(1)] ≈ q2
1 σ2

0 (1+ 3
2 σ2

0 Pe2 )
(

e2Pe−1
)−1(

e
Pe
ε −1

)−2
(

2e
Pe
ε X

+2e
Pe
ε (1−X)

+

+e
Pe
ε 2(1−X)

+e
Pe
ε (1+2X)−2e

Pe
ε (1+X)−2e

Pe
ε (2−X)−e

Pe
ε (1−2X)−e

Pe
ε 2X

+e2Pe
ε −1

)

,

0 6 X 6 1
2 ,

(3.37)

whereCovT[C(1)] for 1
2 < X 6 1 corresponds to substitutingX with 1−X in (3.37), due to the symmetry of

the covariance.
By taking the limit of (3.36) and (3.37) for small Pe≪ O(ε), we find at leading orderVar[C(1)] ≃

ε−1q2
1 σ2X(1−X) andCovT[C(1)]≃ ε−1q2

1 σ2X2, which are identical to the variance (3.13) and transverse
covariance (3.14) respectively (withq1 = ε q).

Figure7 shows that the theoretical predictions (3.36), (3.37) agree well with Monte-Carlo simulations at
intermediate Ṕeclet number Pe= ε1/2 (O(ε)≪Pe≪O(1)), when the effect of advection on the fluctuation
becomes noticeable but no boundary layer has been formed. However, (3.36) differs by a factor of ca. 1.3
for Pe= O(1) (Fig. 6b), which can be attributed in part to neglecting theO(Pe) terms, compared to the
leading-orderO(Pe/ε), in the exponents of (3.36) and (3.37), and to the breakdown of the approximation
(3.32) for Pe& O(1). Nevertheless, (3.36) can be used to explain the boundary layer in the variance at
X = 0,1, observed in Fig.6(b), which has widthO(ε/Pe).

In order to estimate the magnitude of the fluctuations, analogous to (3.15), we take the Chebyshev norm
‖rε‖2

C ≈ maxX Var[rε ] ≈ ε2
Var[C(1)]|X=1/2 as a conservative measure (being an upper bound of the other

norms defined in (2.6)). Then (3.36) gives (after some algebra)

‖rε‖2
C ≈ 2ε2q2

1 σ2
0 (1+ 3

2 σ2
0 Pe2 )

e2Pe−1

1−e− 1
2

Pe
ε

1+e− 1
2

Pe
ε

, q1 = Da/ε . (3.38)
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Figure 7. Monte-Carlo estimates of varianceVar[rε ] (blue circles) and transverse covariance
Cov(rε(X), rε(1−X)) (black diamonds) for a normally-perturbed random process with σ = 0.5ε, com-
puted for Pe= ε1/2, q1 ≡ Da/(εPe) = 1, ε = 0.01, using 5×104 realisations; the dashed lines indicate the
corresponding theoretical predictions (3.36) and (3.37). All data are scaled by(ε q1 σ0)

−2.

When‖rε‖C = O(1), the homogenization approximation fails, defining the critical Damk̈ohler number

Dacr ≈
{

e2Pe−1

2σ2
0 (1+ 3

2 σ2
0 Pe2 )

1+e− 1
2

Pe
ε

1−e− 1
2

Pe
ε

}1/2

. (3.39)

We can therefore divide (Pe,Da)-parameter space into two regions: for Pe. O(ε), Dacr ≃ O(σ−1
0 ε1/2) and

for O(ε) ≪ Pe≪ O(1), Dacr ≃ O(σ−1
0

√
Pe).

Similarly to (3.16), we also estimate under theL2 andH1 norms (2.6) the magnitude of the variance
of the homogenization residue. Integrating (3.36) and its derivative with respect toX over 0< X < 1, we
find (after some algebra), that

ε ‖Var[C(1)]‖1/2
L2

≈ Daσ0/
√

Pe, ε ‖Var[C(1)]‖1/2
H1 ≈ Daσ0/(ε Pe)

1
4 for ε ≪ Pe≪ 1, σ0 ≪ 1. (3.40)

Comparing these to the norms for the periodic (mean) component ‖E[ε C(1)]‖C = ‖E[ε C(1)]‖L2 = O(Da)
and‖E[ε C(1)]‖H1 = O(Da/ε) respectively (from CLDJ), we finally obtain for

‖rε‖ ≈ ε
(

‖E[C(1)]‖ + ‖Var[C(1)]‖1/2
)

(3.41)
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U (0,1) N (i,σ2
0) Periodic (mean)

‖rε‖L2 O(q
√

ε) O(qσ0 ε3/2) O(qε2)

‖rε‖H1 O(q
√

ε) O(qε) O(qε)

Table 1. Asymptotic convergence rates of the homogenization residue, for a periodic array (CLDJ) and
random arrays (based on the analytical results of§ 3.2) in the mean-squared (L2) and Sobolev (mean-squared
with the first derivative;H1) norms at Pe. ε (q = Da/ε2, σ0 = σ/ε . 1).

the estimates

‖rε‖C ≃ ‖rε‖L2 ≃ O(Daσ0/
√

Pe), ‖rε‖H1 ≃ O(Da/ε) for ε ≪ Pe≪ 1,
√

Pe< σ0 ≪ 1. (3.42)

We now combine the results to survey the accuracy of the homogenization approximation in (Pe, Da)-
parameter space for different stochastic sink distributions.

4. Applicability and accuracy of the homogenization approximation on random arrays

Based on the analytical and numerical results of§ 3.1, 3.2and3.3we can estimate the error bounds of the so-
lute transport homogenization (the magnitude of the residue rε ), using (3.15) for “strong” (H1) and “weak”
(L2) norms (2.6). The regions ofH1 (L2)-convergence in (Pe, Da)-space are defined as‖rε‖H1 . O(1)
(‖rε‖L2 . O(1)). Table1 summarises our findings forfn (3.16) and fu (3.20) at Pe. ε (results for the
periodic case are from CLDJ). When diffusion dominates at themicroscale (Pe= O(ε), Da= O(ε2)), the
magnitude of the pointwise variance depends strongly on thedegree of periodicity in the underlying struc-
ture, with fluctuations rising fromO(qε3/2) for almost periodic sink distributions toO(qε1/2) for uniformly
random sink distributions. The corresponding regions of convergence for Pe. ε with a uniformly-random
( fu) sink distribution are illustrated in Figure8(a); the corresponding map for a normally-perturbed peri-
odic array (fn) is shown in Figure8(b). The weak and strong convergence boundaries at Da= O(1) and
Da= O(ε) in the periodic case shrink to Da= O(ε1/2) and Da= O(ε) with f = fn and to Da= O(ε3/2)
with f = fu. In addition, we employ (3.42) to assess the accuracy of the homogenization approximation for
fn-distributed sinks in the intermediate range of Péclet number (ε ≪ Pe≪ 1). Now the weak convergence
boundary Da= O(1) for ε ≪ Pe≪ 1 for periodic sinks is replaced by Da= O(

√
Pe) when f = fn; the

strong convergence boundary at Da= O(ε) is unaltered.
Motivated by the accuracy of periodic homogenization from CLDJ (thick dashed lines and dash-dotted

lines in Fig.8(a,b)) and informed by the analytical magnitudes of fluctuations in the homogenization residue
and its gradient at Pe. ε (Table1), we conjecture the convergence regions forfu and fn at Pe& 1, based
on Monte-Carlo simulations. Figure8(c,d) show convergence results determined by Monte-Carlo simu-
lations when(Pe,Da) = (1,ε2) (point (1) in Fig.8a) and(Pe,Da) = (ε−1/2, ε3/2) (point (2)) with fu-
distributed sinks. Panel (c) in Figure8 shows‖rε‖L2 ∼ ε3/2 in a manner independent of Pe, Da for points
(1) and (2). Assuming that‖rε‖L2 is linear in Da (due to linearity of the original problem (2.1)), so that
‖rε‖L2 ∼Daεβ Peγ and‖rε‖L2 ∼ ε3/2 at each point tested, it follows that‖rε‖L2 ∼Da/(

√
ε Pe) for Pe& 1,

which lies below the periodic-sink-distribution threshold Da/Pe. Likewise, assuming‖rε‖H1 ∼Daεβ1 Peγ1,
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it follows from the scaling illustrated in Fig.8(d) that‖rε‖H1 ∼ Da/(ε
√

Pe) for Pe& 1 (as in the peri-
odic case). While not a formal proof of convergence, these conjectured boundaries are extrapolated into
Pe> 1 in Fig.8(a), while those arising from Table1 and (3.42) are plotted for Pe. 1. Analogous Monte-
Carlo simulations for thefn-distribution withσ0 = 0.5 (not shown) agree with the conjectured boundaries
‖rε‖L2 ∼ Da/Pe and‖rε‖H1 ∼ Da/(ε

√
Pe) for Pe& 1, plotted in Fig.8(b), both of which match the

periodic-sink case.
Thus, the effect of stochasticity on the convergence rates is greatest for small Ṕeclet number Pe≪ 1,

while the presence of strong advection seems to make the homogenization approximation less sensitive to
the fluctuations due to the irregular microstructure. Interestingly, in the case of a uniformly random distribu-
tion (Fig.8a) for Pe≪ ε, the magnitude of the fluctuations is such that the region of strong convergence in
‖ · ‖H1 (medium shade/green) and the region of divergence (dark shade/red) of the homogenization residue
collapse to eliminate the transitional weak convergence region in‖ · ‖L2 (light shade/yellow). In the region
of divergence of stochastic homogenization (dark shade/red in Fig.8(a,b), below the thick dashed lines) the
“noise-to-signal” ratio becomes larger than 1, and thus a particular realisation of the random array cannot
be neglected in calculating the macroscopic transport. Thenormally-perturbed distributionfn with small
standard deviationσ ≡ εσ0 therefore takes a distinct position among the considered random geometries, in
terms of preserving high homogenization accuracy, particularly at small Pe.

5. Discussion

In the present paper we have analysed the spatial correlation and magnitude of fluctuations (about the
leading-order homogenization approximation) of a scalar quantity transported by advection and diffusion
past an irregular array of sinks. We have shown in particularhow fluctuations can be expressed as a func-
tional of the sink locations. At low Pe, this functional is linear. In CLDJ, we derived resulting expres-
sions for the distribution over the domain of the pointwise variance of fluctuations; here we have derived
the corresponding pointwise covariance of fluctuations foruniformly random and normally perturbed sink
distributions (3.14, 3.19). These results reveal the multiscale structure of the homogenization residue: fluc-
tuations appear to be correlated over lengthscales comparable to the whole domain (Fig.5) even when sink
distributions are correlated only over short distances. When Pe= O(1), the functional connecting fluctua-
tions to sink locations becomes nonlinear and evaluating the statistical properties of the fluctuations is less
straightforward. To analyse this case, we used an approximation that is sufficient to capture the structure of
the variance and covariance for normally perturbed sinks for small but finite Pe ((3.36–3.37), Figs6(b), 7);
extending these results to larger Pe and to uniformly randomsink distributions remains an interesting open
problem. Curiously, advection changes the shape of the fluctuation distribution without inducing an asym-
metry in the flow direction, at least for the examples examined here (Figs3(c,d),6(b), 7), emphasising the
equal importance of the global inlet and outlet boundary conditions.

These results, combined with direct Monte-Carlo simulations, were then used to characterise the con-
vergence of the homogenization approximation across(Pe, Da)-parameter space for different sink distribu-
tions. The magnitude of the homogenization residue falls for distributions with a greater degree of period-
icity but grows with increasing sink strength (CLDJ). In Fig. 3(a) of CLDJ we identified the domains of
convergence (under two representative norms) of the homogenization approximation for a periodic sink dis-
tribution. Figure8(a,b) extends these results to uniformly random and normally perturbed sink distributions
respectively. There is a pronounced shrinkage of the domainof convergence, especially for small Péclet
number (Table1), which increases with the loss of regularity in the sink distributions, in a manner illustrated
clearly for individual realisations in Figs4(a) and4(b). Thus corrections to the leading-order approxima-
tion can be significant even when the exact solution is sufficiently smooth. The character of the fluctuations
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Figure 8. (a,b) Types of convergence in (Pe, Da)-space for stochastic homogenization of solute transport
at small-to-moderate Pe with (a) uniformly random distributed sinks, and (b) normally-perturbed sinks (for
σ0 = O(1)). Grey/blue thin solid lines bound the asymptotic regimes (D, A, UD, UA , Us

A , As) illustrated
in Fig. 1. The region of “strong” convergence in the Sobolev (H1) norm is shown in medium shade/green,
the region of “weak” convergence in the mean-squared (L2) norm is in light shade/yellow, and the region
of global divergence (inL2-norm) is in dark shade/red (plotted forε = 0.05). Solid boundaries in Pe. 1
are as identified in Table1 and (3.42). The black thick dashed lines in (a,b) indicate the border of the
divergence region in the case of a periodic array (CLDJ); thin dashed and dash-dotted lines conjecture,
based on Monte-Carlo simulations, the upper boundaries ofL2 andH1-convergence respectively for higher
Pe. (c,d) Monte-Carlo simulation of convergence rates for the points (1) Pe= 1, Da= ε2 (solid line) and
(2) Pe= ε−1/2, Da= ε3/2 (dashed line) from the parameter space (a) (ensemble average over 1000 samples
for eachN ∼ ε−1); triangles indicate a slope in accord to the scaling of the thin dashed (Da∼√

ε Pe) and
dash-dotted (Da∼ ε

√
Pe) lines in (a) (with both points lie parallel to the former but not to the later lines).
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at low Pe is sensitive to the sink distribution, with sharpergradients arising between normally perturbed
sinks than between uniformly random sinks (compare Figs4(c) and4(d)). This reflects the fact that the
breakdown of the homogenization approximation in the uniformly random case for Pe≪ ε bypasses the
regime of weak convergence (Fig.8a): fluctuations are relatively smooth but grow rapidly in magnitude as
Da increases. At higher Pe (Fig.3), for both sink distributions that we examined, convergence is influenced
both by the magnitude of fluctuations and large inter-sink gradients, allowing regimes of weak and strong
convergence to be identified. An important factor contributing to the deviation of the exact solution from
the homogenization approximation is the clustering of sinks that is evident in Fig.3(a,b). This might be
analysed in future studies by considering arrays of sinks ofvarying strength with larger inter-sink distance,
or by introducing a lengthscale for inter-cluster spacingε1 that is intermediate between the microscaleε and
the global scale 1 (ε ≪ ε1 ≪ 1), and then performing reiterated homogenizationBensoussanet al. (1978).

We can compare our analytical and numerical predictions with existing theoretical results for random
homogenization of problems similar to (2.1) that take into account the spatial autocorrelation properties
of the coefficients of corresponding governing equations.Bourgeat & Piatnitski(1999) show in their
Lemma 4.2 that the homogenization error of a one-dimensional diffusion-reaction equation (Pe= 0) is
E[max

X
| rε(X) |2 ]1/2 6 O(

√
ε) when the diffusion coefficient is a stationary random process with “short-

term memory”, andE[max
X

|rε |2 ]1/2 6 O(εγ/2) for a “long-term memory” coefficient (0< γ < 1). Bal &

Jing (2010) generalise these results for a linear transport-attenuation-scattering equation in two and three
dimensions and show that, when the equation coefficients arebounded functions of a Poisson point process
(with short-term memory,γ > 1), the following estimate holds:E[‖rε‖2

L2
]1/2 6 O(

√
ε). Since the source

term in (2.1), defined by a sink distribution, is a short-term-memory stationary process, one might expect a
similar upper bound on the residuerε being applicable. We indeed observe that the homogenization error
for both stochastic sink distributions considered here arebounded byO(

√
ε) for Pe& 1, when Da= O(εPe)

(data not shown; see alsoChernyavsky(2011)). This upper bound is exact for a uniformly-random distribu-
tions; however, it considerably overestimates the error inthe case of a normally-perturbed sink distribution
(which can be as low asO(ε) for this parameter regime), highlighting the importance ofdistribution-specific
error estimation.

The present problem was chosen to be deliberately simple in order to allow analytical progress. Many
extensions might be usefully explored. In CLDJ, for example, we reported results for sinks satisfying a hard-
core distribution (for which sinks are distributed sequentially from a uniform distribution provided they do
not fall within a prescribed distanced of an existing sink). The statistics of fluctuations resemble those of a
uniformly random distribution (Fig. 4(d,e) of CLDJ) whend is sufficiently small (just as fluctuations over an
array of normally perturbed sinks become essentially indistinguishable from those over a uniformly random
array whenσ & 0.3). Even though the hard-core process appears empirically closer to a periodic array for
largerd, the solution over a hard-core array converges slower toC(0) than that over a normally-perturbed
array for sufficiently smallε (data not shown), because of the lower degree of long-range correlation in sink
locations for normally perturbed sinks.

Another obvious extension of the present model is to consider other types of uptake kinetics. We
demonstrate in AppendixA that moving from zeroth to higher-order kinetics retains the gross features of

the leading-order analysis, with the leading-order homogenization approximation satisfyingC(0)
XX− pC(0)

X =

q
(

C(0)
)α

. The corrections toC(0) obtained on a periodic array in CLDJ forα = 0 also remain valid for
α > 0, substitutingq with q(C(0)(X))α , i.e. the bounds on the homogenization residue become spatially
non-uniform, varying slowly over the array. However, a moredetailed analysis of fluctuations forα > 0
remains the subject of future work.
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Finally, it is of interest to consider further extensions ofthe present approach to problems in two or
three dimensions and to sinks of finite size, so that the accuracy of homogenization approximations for flow
and transport problems in random porous media (of the variety illustrated in Figure1) can be assessed for
different classes of stochastic geometries.

A. Transport with power-law uptake kinetics on a periodic array

We consider a model generalising (2.1) that is given by

d2C
dx2 −Pe

dC
dx

= Da f (x)Cα , f =
N

∑
i=1

δ (x−ξi), 0 < x < ε−1, (A.1a)

C|x=0 = 1, C|x=ε−1 = 0 or C|x=x0 =
dC
dx

∣

∣

∣

∣

x=x0

= 0, (A.1b)

where Pe= u0 l/D is the microscopic Ṕeclet number, and Da= q0 l/(DC1−α
0 ) is the microscopic Damk̈ohler

number andα is the order of uptake kinetics (thusq0 is measured in mol·s−1 ·m−2 for zero-order uptake
(α = 0) and in m·s−1 for first-order uptake (α = 1)).

We look for an approximatex-periodic solution to (2.1) about the organising centre Pe= ε p, Da= ε2q
(p,q = O(1)) in the form of a two-scale asymptotic power series (2.2). Substituting (2.2) and (2.3) into
(A.1) and collecting terms in powers ofε, we get atO(1)

C(0) = C(0)(X) ; C(0)|X=0 = 1, C(0)|X=1 = 0 or C(0)|X=X0 = C(0)
X |X=X0 = 0. (A.2)

At O(ε), we find thatC(1) ≡ 0, and atO(ε2), we obtain

C(0)
XX− pC(0)

X = −C(2)
xx +q

(

C(0)
)α

N

∑
i=1

δ (x− i) (A.3a)

C(2) is x-periodic. (A.3b)

Integrating (A.3a) over a unit cell−1/2 6 x− i 6 1/2, we finally have

C(0)
XX − pC(0)

X = q
(

C(0)
)α

, (A.4)

subject to the global boundary conditions. Solution and detailed analysis forα = 0 is given in CLDJ. For
first-order kinetics (α = 1), equation (A.4) has the solution

C(0) = epX/2 sinh

(

√

q+ p2/4(1−X)

)

/sinh
√

q+ p2/4, (A.5)

shown in FigureA.1. At large Pe, neglecting the diffusive boundary layer at theoutlet, this simplifies to
C(0) = e−(q/p)X (cf. C(0) = 1− (q/p)X for zeroth-order uptake; see also the general expression (2.4)).
Both global advective and uptake fluxes are approximately balanced whenq ∼ p ≫ 1 (as showed by the
asymptotic line Da= εPe in Fig.1); however this balance is more sensitive to the change in Da/Pe ra-
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Figure A.1. Leading-order approximationC(0) for transport with first-order uptake (α = 1) past a
periodic sink distribution. Concentration profiles (A.5) for points (1-4) in the(Pe, Da)-parameter space
(Pe= ε2,1,ε2,1 and Da= ε,ε0.6,ε3,ε1.4), corresponding to the transport regimes UD, UA , D, A defined in
Fig. 1 (computed forε = 0.05; circles show the locations of the 19 sinks).

tio in the case ofα = 1 than forα = 0, owing to the exponential rather than linear decay in the solute
concentration.

Substituting (A.4) into (A.3) and using the global boundary conditionC(2)|X=0 = 0, we find the first non-
vanishing correction toC(0) in a unit cell: C(2) = −q

2 (C(0))α (x2−|x|), which becomes of the same order
of magnitude asC(1) for q = O(ε−1) (Da= O(ε)), suggesting the second organising centre at Da= O(ε),
Pe= O(1).

Analogously, substituting (2.2) and (2.3) into (A.1) around the second organising centre Pe= O(1),
Da= O(ε) = ε q1, and collecting terms in powers ofε, we get the following problem for the correction to
C(0) in a single unit cell−1/2 6 x′ = x− i 6 1/2 (prime overx is omitted):

C(1)
xx −PeC(1)

x = PeC(0)
X +q1

(

C(0)
)α δ (x), C(1) is x-periodic, (A.6a)

which has a solution

C(1)(x) =
q1
(

C(0)
)α

Pe

(

−exp
(

Pe
(

x± 1
2

))

2sinh(Pe/2)
+x+

coth(Pe/2)±1
2

)

, (A.7)

for 0 < ∓x 6 1/2, where the global boundary condition (A.1b) is used to derive the local condition
C(1)(0) = 0. Comparing (A.7) to the correction obtained in Eqn. (A12) of CLDJ forα = 0, we note that
the uniform ratioq1/Pe is replaced with a slowly varying correction magnitudeq1 (C(0))α/Pe in the case
α > 0. Therefore, the upper limit on the applicability of homogenization is changed from Da≪ max{1, Pe}
to Da

(

C(0)
)α ≪ max{1, Pe}, thus becoming heterogeneous over the array. Otherwise, the leading-order
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regimes depicted in Figure1 remain valid forα > 0.

B. Moments of a sink statistics functional

In this Appendix we derive the mean and transverse covariance of the linear (3.6) and nonlinear (3.26) partial
sums of the sink statistics needed to compute the correlation properties of the homogenization residue in
§ 3.2and3.3.

B.1. Normally-perturbed periodic array ( fn)

We first consider a normally-perturbed periodic arrayξ j ∼ N ( j, σ2
0 ) ∼ j +σ0N (0,1), i.e.E[ξ j ] ≡ µ j = j

andVar[ξ j ] = σ2
0 (σ ≡ σ0 ε, takingσ0 ≪ 1 in order for sinks not to swap places) and compute the moments

of (3.6)

Ri =
i

∑
j=1

ξ j , i = 1, . . . ,N .

Owing to the independence ofξi for smallσ0, using the linearity property of expectationE

[

∑i
j=1 ξ j

]

=

∑i
j=1 µ j = i(i + 1)/2 and the property of a non-centralχ2 distribution with one degree of freedom

E[ξ 2
j ] = µ2

j +σ2
0 , µ j ≡ j, we have

Ri ∼
i

∑
j=1

N ( j,σ2
0) ∼ N

(

i(i+1)
2 , iσ2

0

)

. (B.1)

It remains to obtainCov(Rk,Rp) ≡ E[RkRp]−E[Rk]E[Rp] for k 6= p. The independence ofξ j andξl ,
i.e. Cov(ξ j ,ξl ) = 0, for j 6= l , assuming thatσ0 is small enough for sinks not to swap places andk 6 p,
gives

Cov(Rk,Rp) =
k

∑
j=1

p

∑
l=1

{

E[ξ j ξl ]−E[ξ j ]E[ξl ]
}

=
k

∑
j=1

k

∑
l=1

{

E[ξ j ξl ]−E[ξ j ]E[ξl ]
}

+

+
k

∑
j=1

p

∑
l=k+1
(l 6= j)

Cov(ξ j ,ξl ) = E

[

k

∑
j=1

k

∑
l=1

ξ j ξl

]

− E

[

k

∑
j=1

ξ j

]

E

[

k

∑
l=1

ξl

]

= Var[Rk] ,

(B.2)

reducing the covariance (fork 6 p) to the corresponding variance.
We now turn to the case of the nonlinear functional of sink distribution Qi given by (3.26)

Qi =
i

∑
j=1

e−Peξ j , ξi ∼ N (i,σ2
0), i = 1, . . . ,N ,

wereE[ξi ] ≡ µi = i, Var[ξi ] = σ2
0 .

Assuming small standard deviationσ0/µi ≪ 1, we can find the corresponding expectation, variance and

covariance forg(ξi) = e−Peξi by assumingg has an approximately normal distribution, and expanding it
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about the meanµi :

E[g(µi +(ξi −µi))] ≈ gi +
1
2 g′′i Var[ξi ]+

1
24 g′′′′i E[(ξi −µi)

4]+ . . . , gi ≡ g(µi) . (B.3)

For a normally distributedξi with E[(ξi −µi)
4] = 3σ4

0 , (B.3) gives

E[Qi ] ≡
i

∑
j=1

E[g(ξ j)] ≈
[

1+ 1
2 Pe2σ2

0 + 1
8 Pe4σ4

0

]
i

∑
j=1

e−Pej =
[

1+
Pe2σ2

0
2 +

Pe4σ4
0

8

] 1−e−Pei

ePe−1
, (B.4)

where we used the geometric progression
n
∑
j=1

sj = s(sn−1)/(s−1) to compute the sum.

Analogously

Var[g(ξi)] ≡ E[g(ξi)
2]− (E[g(ξi)])

2 ≈ (g′i)
2
Var[ξi ]+

(

1
3 g′i g

′′′
i + 1

6 (g′′i )
2)

E[(ξi −µi)
4] , (B.5)

and sinceVar[Qi ] = ∑i
j=1 ∑i

k=1{E[g(ξ j)g(ξk)]−E[g(ξ j)]E[g(ξk)]} = ∑i
j=1Var[g(ξ j)] due to the indepen-

dence ofξ j andξk, i.e. Cov(g(ξi),g(ξk)) = 0, for j 6= k and smallσ0, we get from (B.5) the variance

Var[Qi ] ≈ Pe2σ2
0

[

1+ 3
2 Pe2σ2

0

]
i

∑
j=1

e−2Pe j = Pe2σ2
0

[

1+ 3
2 Pe2σ2

0 +O(σ4
0)
] 1−e−2Pei

e2Pe−1
. (B.6)

It remains to find the covarianceCov(Qi ,Qk) = E[QiQk]−E[Qi ]E[Qk] for i 6= k. We denote ˚gi ≡
g(ξi)−E[g(ξi)], so thatE[g̊i ] = 0 andE[g̊2

i ] = Var[g(ξi)]. Then, fori 6 k,

Cov(Qi ,Qk) =
i

∑
j=1

k
∑

l=1
E[g̊ j g̊l ] =

i
∑
j=1

E[g̊2
j ]+

i
∑
j=1

k
∑

l=1
(l 6= j)

E[g̊ j g̊l ]

=
i

∑
j=1

Var[g(ξ j)]+
i

∑
j=1

k
∑

l=1
(l 6= j)

Cov(g(ξi),g(ξk)) ,

(B.7)

with the first sum on the right-hand side of (B.7) being equal to (B.6) and the second sum vanishing due to
the independence ofg(ξ j) andg(ξl ), i.e.Cov(g(ξi),g(ξk)) = 0 ( j 6= l ), for sufficiently smallσ0, providing
the covariance

Cov(Qi ,Qk) = Var[Qi ] , i 6 k, (B.8)

which is given by (B.6).
By repeating the calculations (B.3)–(B.6) up to O(σ6

0 ), taking into account that

1/
√

2π
∫ ∞
−∞ t6e−t2/2dt = 15 and henceE[(ξi − µi)

6] = 15σ6
0 , we find, after some algebra, thatVar[Qi ] ∼

Pe2σ2
0 [1+ 3

2 Pe2σ2
0 + 7

6 Pe4σ4
0 +O(σ6

0)] ≃ ePe2σ2
0 (ePe2σ2

0 −1), which is related to the variance of the log-

normal distribution of e−Peξi (Korn & Korn, 2000).
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B.2. Uniformly random array ( fu)

When f = fu, we turn toMatsunawa(1985), who determined the distribution of linear combinations of
order statistics drawn fromU (0,1) (i.e. combinations of̂ξ1, . . . , ξ̂N, whereξ̂i ≡ εξi) as a mixture of scaled
Beta distributions.

Let us consider̂ξi , i = 1, . . . ,N to be the ordered values from a sample ofN independent uniformly
distributed random variables on[0,1], whereξ̂i < ξ̂ j for i < j, and also set̂ξ0 = 0 andξ̂N+1 = 1 to account
for the boundary conditions. LetVi = ξ̂i − ξ̂i−1, i = 1, . . . ,N + 1 and so (V1, . . . ,VN+1) has a Dirichlet
distribution with(N + 1)-vector of parameters(1,1, . . . ,1) Matsunawa(1985). From the properties of the
Dirichlet distribution we know that

E[Vi ] =
1

N+1
, Var[Vi ] =

N
(N+1)2 (N+2)

, Cov(Vi ,Vj) =
−1

(N+1)2 (N+2)
, (B.9)

wherei 6= j, i, j = 1, . . . ,N.
Consider the partial sums of order statisticsξ̂i

Lk =
k

∑
j=1

b jVj , Tp =
p

∑
q=1

cqVq, (B.10)

whereb j , cq are given deterministic weights. Then, from (B.9) and the linearity property of expectation we
have

E[Lk] =
k

∑
j=1

b jE[Vj ] =

k
∑
j=1

b j

N+1
, (B.11a)

Var[Lk] =
k

∑
j=1

k

∑
l=1

b jbl Cov(Vj ,Vl ) =

k
∑
j=1

b2
j

(N+1)(N+2)
−

k
∑
j=1

k
∑

l=1
b jbl

(N+1)2 (N+2)
, (B.11b)

Cov(Lk,Tp) =
k

∑
j=1

p

∑
q=1

b jcqCov(Vj ,Vq) =

k
∑
j=1

p
∑

q=1
b jcq

{

(N+1)δ jq −1
}

(N+1)2 (N+2)
, (B.11c)

wherek, p = 1, . . . ,N, k 6 p andδ jq is the Kronecker delta-function.
We now consider expressions for the mean, variance and covariance of the partial sumsRk of the order

statistics:

Rk ≡ ε−1
k

∑
j=1

ξ̂ j ≡
k

∑
j=1

(k− j +1)Vj , Rp ≡ ε−1
p

∑
q=1

ξ̂q ≡
p

∑
q=1

(p−q+1)Vq , (B.12)

with coefficients of (B.10) being

b j = k− j +1, cq = p−q+1, (k, j, p,q = 1, . . . ,N). (B.13)
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We also note the following identities for (B.13):

k

∑
j=1

b j ≡
k(k+1)

2
,

k

∑
j=1

b2
j ≡

k(k+1)(2k+1)

6
,

k

∑
j=1

b jc j ≡
k(k+1)(2k+1)

6
+

k(k+1)(p−k)
2

.

(B.14)

Hence, from (B.11), (B.12) and (B.14), usingε−1 ≡ N+1, we get the mean, variance and covariance
of Rk:

E[Rk] ≡ ε−1
E[Lk] =

k(k+1)

2
, (B.15a)

Var[Rk] ≡ ε−2
Var[Lk] =

k(k+1)(2k+1)(N+1)

6(N+2)
− (E[Rk])

2

N+2
, (B.15b)

Cov(Rk,Rp) ≡ ε−2
Cov(Lk,Tp) =

k(k+1)(2k+1)(N+1)

6(N+2)
+

k(k+1)(p−k)(N+1)

2(N+2)
− (B.15c)

− E[Rk]E[Rp]

N+2
, k 6 p.

Acknowledgements

The authors would like to gratefully acknowledge the financial support of the AirPROM 7th European
Framework and the Marie Curie Network MMBNOTT (Project No. MEST-CT-2005-020723) (ILC) and
the Leverhulme Trust (OEJ).

References

ACRIVOS, A., HINCH, E. J. & JEFFREY, D. J. (1980) Heat transfer to a slowly moving fluid from a dilute
fixed bed of heated spheres.J. Fluid Mech., 101, 403–421.

ALLAIRE , G. & RAPHAEL, A.-L. (2007) Homogenization of a convection-diffusion model with reaction
in a porous medium.Comptes Rendus Mathematique, 344, 523–528.

AURIAULT, J.-L. & ADLER, P. M. (1995) Taylor dispersion in porous media: Analysis bymultiple scale
expansions.Adv. Water Resour., 18, 217–226.

BABUS̆KA, I. (1976) Solution of interface problems by homogenization. I. SIAM J. Math. Anal., 7, 603–
634.

BAKHVALOV , N. S. (1974) Averaged characteristics of bodies with periodic structure.Soviet Physics Dok-
lady, 19, 650.

BAKHVALOV , N. S. & PANASENKO, G. P. (1989)Homogenisation: Averaging Processes in Periodic
Media; Mathematical Problems in the Mechanics of CompositeMaterials, Mathematics and its applica-
tions, vol. 36. Dordrecht: Kluwer Academic Publishers, 366 pp.



REFERENCES 29 of31

BAL , G. & JING, W. (2010) Homogenization and corrector theory for linear transport in random media.
Discret. Contin. Dyn. Syst., 28, 1311–1343.

BATCHELOR, G. K. & O’BRIEN, R. W. (1977) Thermal or electrical conduction through a granular mate-
rial. Proc. R. Soc. Lond. A, 355, 313–333.

BENSOUSSAN, A., L IONS, J.-L. & PAPANICOLAOU, G. (1978)Asymptotic Analysis for Periodic Struc-
tures, Studies in mathematics and its applications, vol. 5. Elsevier North-Holland, 700 pp.

BERDICHEVSKII, V. L. (1975) Spatial averaging of periodic structures.Soviet Physics Doklady, 20, 334.

BERGMAN, D. J. (1980) Exactly solvable microscopic geometries and rigorous bounds for the complex
dielectric constant of a two-component composite material. Phys. Rev. Lett., 44, 1285–1287.

BOURGEAT, A. & PIATNITSKI , A. (1999) Estimates in probability of the residual betweenthe random and
the homogenized solutions of one-dimensional second-order operator.Asymptotic Analysis, 21, 303–315.

CAPASSO, V. (2009) Multiple scales and geometric structures: additional sources of randomness.J. Math.
Biol., 59, 143–146.

CHAPMAN, S. J., SHIPLEY, R. J. & JAWAD , R. (2008) Multiscale modeling of fluid transport in tumors.
Bull. Math. Biol., 70, 2334–2357.

CHERNYAVSKY, I. L. (2011)A Multiscale Analysis of Flow and Transport in the Human Placenta. PhD
Thesis, The University of Nottingham.

CHERNYAVSKY, I. L., LEACH, L., DRYDEN, I. L. & JENSEN, O. E. (2011) Transport in the placenta:
homogenizing haemodynamics in a disordered medium.Phil. Trans. R. Soc. A, 369, 4162–4182.

HASHIN, Z. & SHTRIKMAN , S. (1962) A variational approach to the theory of the effective magnetic
permeability of multiphase materials.J. Appl. Phys., 33, 3125–3131.

KELLER, J. B. (1963) Conductivity of a medium containing a dense array of perfectly conducting spheres
or cylinders or nonconducting cylinders.J. Appl. Phys., 34, 991–993.

KELLER, J. B. (1977) Effective behavior of heterogeneous media. E.W. Montroll & U. Landman, eds.,
Statistical Mechanics and Statistical Methods in Theory and Application, New York: Plenum Press, pp.
631–644.

KORN, G. A. & KORN, T. M. (2000)Mathematical Handbook for Scientists and Engineers: Definitions,
Theorems, and Formulas for Reference and Review. Mineola, N.Y: Dover Publications, 1152 pp.

MADDOCKS, J. H. (2004) Bifucation theory, symmetry breaking and homogenization in continuum me-
chanics descriptions of DNA. D. Givoli, M. J. Grote & P. G. C.,eds.,A celebration of mathematical
modeling: the Joseph B. Keller anniversary volume, Dordrecht: Kluwer, pp. 113–136.

MATSUNAWA , T. (1985) The exact and approximate distributions of linear combinations of selected order
statistics from a uniform distribution.Ann. Inst. Stat. Math., 37, 1–16.



30 of31 REFERENCES

MAURI , R. (1991) Dispersion, convection, and reaction in porous media.Phys. Fluids A, 3, 743–756.

MAXWELL , J. C. (1873)A Treatise on Electricity and Magnetism, vol. 1. Oxford: Clarendon press, 365
pp.

MCCARTY, P. & HORSTHEMKE, W. (1988) Effective diffusion coefficient for steady two-dimensional
convective flow.Phys. Rev. A, 37, 2112– 2117.

MCLAUGHLIN , D. W., PAPANICOLAOU, G. C. & PIRONNEAU, O. R. (1985) Convection of microstruc-
ture and related problems.SIAM J. Appl. Math., 45, 780–797.
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