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Abstract — A system of nonlinear equations for describing the perturbations of the pressure and radius
in fluid flow through a viscoelastic tube is derived. A differential relation between the pressure and the
radius of a viscoelastic tube through which fluid flows is obtained. Nonlinear evolutionary equations for
describing perturbations of the pressure and radius in fluid flow are derived. It is shown that the Burgers
equation, the Korteweg-de Vries equation, and the nonlinear fourth-order evolutionary equation can be
used for describing the pressure pulses on various scales. Exact solutions of the equations obtained are
discussed. The numerical solutions described by the Burgers equation and the nonlinear fourth-order
evolutionary equation are compared.

Keywords: nonlinear waves, evolutionary equations, Burgers equation, Korteweg-de Vries equation,
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The nonlinear wave processes in fluid flow through a viscoelastic tube simulate processes in the cardio-
vascular system. The vessels of the vascular system (arteries and arterioles) perform the conducting and
damping functions [1–4]. The conducting function is responsible for transporting oxygen-enriched blood
to the various organs and tissues while the damping function leads to the smoothing of pressure pulses so
that at a certain distance from the aorta the blood flow becomes almost steady-state. Diseases of the cardio-
vascular system disturb both these functions. For example, atherosclerosis is an impairment of conductivity
as a result of cholesterol deposits and luminal narrowing up to occlusion (complete blockage) of the vessel.
This leads to ischemic diseases of the tissues. The atherosclerotic process mainly affects the large arteries.
Arteriosclerosis is an impairment of the damping function in which the pressure pulses are poorly smoothed
due to structural changes in the vessel walls. This leads to an increase in blood pressure (hypertension) and
secondary damage to the vessels. Therefore, it is of interest to construct and analyze a model that takes into
account the specific properties of the vessel wall.

Many approaches to studying the blood flow in vessels have used linear models [5]. However, already
in [6–9] the need to take nonlinear effects into account was noted. In a series of studies linear [10, 11]
and nonlinear [12, 13] equations relating the pressure and the radius have been obtained for describing
the interaction between the wall and the fluid flow. An analysis of one-dimensional closed systems in the
long-wave approximation leads to a set of reduced equations. These include the Burgers [12], Korteweg-de
Vries [12, 14, 15], and Korteweg-de Vries-Burgers equations [12]. Many studies have been devoted to the
numerical solution of the problem of fluid flow in viscoelastic and elastic tubes using the finite-difference
and finite-element methods, for example, [13, 16]. In this case the higher derivatives corresponding to vis-
coelastic effects are neglected in view of the complexity of the numerical simulation [11]. At the same time,
the viscoelasticity of the wall is important in connecting with the damping of high-frequency oscillations in
the blood stream [6].

The aim of the present study is to take into account the nonlinear elasticity and viscoelasticity of the wall
and extend the family of evolutionary equations to describe the nonlinear wave processes. A variational
method is used for deriving the equation relating the pressure and the radius. The use of the multiscale

0015–4628/06/4101–0049  2006 Springer Science + Business Media, Inc.



50 KUDRYASHOV AND CHERNYAVSKII

technique makes it possible to separate and classify the effect of the mechanical properties of the system on
the evolution of perturbation waves. This approach can also be used to obtain a series of other evolutionary
equations corresponding to other mechanical properties of the model.

1. EQUATION RELATING THE PRESSURE AND THE RADIUS OF A VISCOELASTIC
TUBE IN FLUID FLOW

We will consider the flow of a fluid, assumed to be incompressible, through an axially symmetric tube
under the following assumptions: (1) the tube wall density is constant; (2) the tube strain is characterized by
the change in its radius, which depends on the coordinate and time; (3) the deformation of the tube wall and
the wall thickness are small as compared with the radius and the characteristic lengths of the wave processes
are much greater than the equilibrium radius; and (4) the pressure of the fluid in the flow is the same over
the entire tube cross-section and depends on the coordinate and time.

In order to derive the equation of motion of the tube wall we will use the principle of least action in
accordance with which the true motion is realized on the extremals of the action

J[R(x, t)] =

t1∫

t0

Ldt → min
R(x, t)

(1.1)

We represent the Lagrangian L which characterizes the state of the system as the difference between the
kinetic and potential energies

L = T − U, U = Uel − A (1.2)

where A is the work done by the dissipation and pressure forces in expanding the tube and Uel is the elastic
potential energy of the tube.

We will consider a fragment of the tube in the cylindrical coordinate system (r, x ≡ z). The kinetic energy
of a tube element of length l, where l corresponds to the characteristic wave lengths in the fluid flow, can be
represented in the form:

T =

l∫

0

πρwhRRt dx

where ρw is the volume density of the tube wall, h is its thickness, and R = R(x, t) is the radius of the tube
wall. from the incompressibility of the tube wall and the conservation of its mass there follows the condition
hR = const = h0R0, where h0 and R0 are the thickness of the undisturbed wall and the equilibrium radius of
the tube, respectively. Then the kinetic energy takes the form:

T =

l∫

0

πρwh0R0Rt dx (1.3)

The elastic potential energy of a tube element of length l consists of two parts. The first characterizes the
elastic energy of the wall as a system of independent nonlinearly elastic rings

U1 =

l∫

0

[
πκh(R − R0)

2 +
2πκ1h

3
(R − R0)

3
]

dx

κ =
E

R0(1 − σ 2)

Here, κ is the linear elasticity coefficient characterizing the extension of a tube element, E is the lon-
gitudinal Young’s modulus, σ is Poisson’s ratio, and κ1 is the nonlinear elasticity coefficient (quadratic
correction to Hooke’s law).
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The second part is characterized by the elastic energy of the longitudinal wall fibers which is proportional
to the increase in the area of a wall element of length l due to bending along the x axis:

U2 =

l∫

0

2πkhR
√

1 + R2
x dx −

l∫

0

2πkhRdx (1.4)

The coefficient k characterizes the longitudinal wall stresses. In accordance with [11], it is equal to σxx,
where σxx is the normal axial component of the wall stress tensor. For blood vessels this corresponds to their
constant stress along the axis.

From (1.4) for small strains we obtain

U2 =

l∫

0

πkhRR2
x dx

The total elastic potential energy of a tube fragment of length l can be determined from the expression

Uel =

l∫

0

(
πκh(R − R0)

2 +
2
3

πκ1h(R − R0)
3 + πkhRR2

x

)
dx (1.5)

Let the pressure Pe on the outer surface of the tube be constant, while the fluid pressure P(x, t) is assumed
to be constant over the vessel cross-section. By analogy with the fluid viscosity, we will take into account
the viscous forces of the vessel walls. The elementary work done by these viscous forces [17], the forces
resisting the motion of the wall, the fluid pressure forces, and the external pressure forces can be taken into
account by means of the formula

δA =

l∫

0

2πR

(
h f − µ

∂R
∂ t

)√
1 + R2

x dxδR +

l∫

0

2πR(P − Pe)dxδR

f = χ
∂ 3R

∂x2∂ t

(1.6)

where the force f can be determined in terms of the radial component of the viscous-force stress tensor [17].
Simplifying (1.6), we have

δA =

l∫

0

2πR

[
χh

∂ 3R
∂x2∂ t

− µ
∂R
∂ t

+ P − Pe

]
dxδR (1.7)

Here, χ is the viscosity coefficient of the tube material introduced by analogy with the dynamic viscosity
of the fluid and µ is the proportionality coefficient of the resistance of the medium to the motion of the tube
wall.

Taking expressions (1.2), (1.3), and (1.5) into account, we obtain a Lagrangian in the form:

L =

l∫

0

(
πρwh0R0R2

t − πκh(R − R0)
2 − 2

3
πκ1h(R − R0)

3 − πk hR R2
x

)
dx + A

where A is given by expression (1.7).
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Minimizing the functional (1.1) on the class of smooth functions R(x, t) considered on the time interval
[t0, t1], in accordance with the principle of least action we obtain the Euler equation and the transversality
conditions in the form:

R(P − Pe + χhRtxx − µRt) = ρwh0R0Rtt − khRRxx −
kh
2

R2
x + κh(R − R0) + κ1h(R − R0)

2 (1.8)

∂R(x, t)
∂x

∣∣∣∣x=0
x= l

= 0,
∂R(x, t)

∂ t

∣∣∣∣
t=t1

= 0

Taking into account small perturbations of the wall radius η(x, t)

R(x, t) = R0 + η(x, t), h = h0
R0

R
, R0 = const, h0 = const

and neglecting the term kh0η2
x /2R0 and higher-order terms, in the longwave perturbation approximation

from Eq. (1.8) we obtain

P − Pe = ρwh0ηtt − kh0ηxx − χh0ηtxx + µηt +
κh0

R0
η +

κ2h0

R2
0

η2

κ2 ≡ κ1R0 − 2κ
(1.9)

In essence, equation (1.9) is the equation of state for the motion of the fluid in the tube. In the simplest
steady-state case the fluid pressure in the tube depends linearly on the radius.

2. EQUATION OF FLUID FLOW IN A VISCOELASTIC TUBE

In order to describe fluid flow in an axially symmetric viscoelastic tube of variable cross-section we will
use the continuity equation and the axial component of the two-dimensional Navier-Stokes equation

∂ (vr)
∂ r

+
∂ (ur)

∂x
= 0

∂u
∂ t

+ v
∂u
∂ r

+ u
∂u
∂x

+
1
ρ

∂P
∂x

= ν0

[
∂ 2u
∂x2 +

1
r

∂
∂ r

(
r

∂u
∂ r

)] (2.1)

where v and u are the radial and axial components of the flow velocity, ν0 is the kinematic viscosity, and ρ
is the fluid density.

We will assume that the radial profile of the axial velocity component has the form:

u(r, x, t) =
s + 2

s

[
1 −

( r
R

)s]
ua(x, t), ua(x, t) =

2
R2

R(x, t)∫

0

u(r, x, t)r dr

Here, s is the exponent of the profile steepness. As in [18], averaging the fluid mass and momentum
conservation equations (2.1) over the tube cross-section, we arrive at the one-dimensional equations

∂S
∂ t

+
∂ (Sua)

∂x
= 0 (2.2)

∂ua

∂ t
+ ua

∂ua

∂x
+

1
ρ

∂P
∂x

= ν0
∂ 2ua

∂x2 − 2ν0(s + 2)
ua

R2 (2.3)
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Here, ua = ua(x, t) is the cross-section-average axial velocity component and S = S(x, t) is the tube
cross-sectional area. In what follows, the subscript of ua will be omitted.

Since S(x, t) = πR(x, t)2, equation (2.2) can be reduced to the form:

Rt + uRx +
1
2

Rux = 0

Taking into account small variations of the tube radius R = R0 + η , we obtain the equation

ηt +
1
2

R0ux +
1
2

ηux + uηx = 0 (2.4)

In the present study we will restrict our attention to the analysis of nonlinear waves in the longwave
approximation for large Reynolds numbers. In blood vessels this approximation holds for large and medium-
sized arteries [6, 11].

Thus, for describing the one-dimensional fluid flow through an axially symmetric viscoelastic tube at
large Reynolds numbers we have a system of equations in the form:

ηt +
1
2

R0ux +
1
2

ηux + uηx = 0

ut + uux +
1
ρ

Px = 0 (2.5)

P = ρwh0ηtt − kh0ηxx − χh0ηtxx + µηt +
κh0

R0
η +

κ2h0

R2
0

η2 + Pe

Assuming that the flow pressure is proportional to the radius perturbation and omitting the nonlinear
terms in the system of equations for the inviscid fluid, we obtain the simple linearized system for the fluid
flow in an elastic tube

ηt +
R0

2
ux = 0, ut +

1
ρ

Px = 0, P =
κh0

R0
η + Pe (2.6)

System (2.6) can be written in the form:

ηt +
R0

2
ux = 0, ut +

κh0

ρR0
ηx = 0

Differentiating the first and second of the equations with respect to x and t, respectively, we obtain the
following linear wave equations for the velocity perturbations

utt =
κh0

2ρ
uxx

A similar equation holds for the radius and pressure perturbations.
For fluid flow through an elastic tube the pressure pulse propagation velocity obtained by Moence and

Korteweg has the form:

c0 =

√
κh0

2ρ
=

√
Eh0

2ρR0(1 − σ 2)
(2.7)

We introduce the dimensionless variables

t =
l

c0
t ′, x = lx′, u = c0u′, η =

R0

2
η ′

P = P0P′, P0 = Pe

(2.8)
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In the dimensionless variables the system of flow equations (2.5) has the form (primes omitted):

ηt + ux +
1
2

ηux + uηx = 0

ut + uux +
1
α

Px = 0 (2.9)

P = γηtt − βηxx + ληt − δηtxx + αη + α1η2 + 1

α =
ρc2

0

P0
, β =

kh0R0

2P0l2 , γ =
ρwh0R0c2

0

2P0l2

δ =
χh0R0c0

2P0l3 , λ =
µR0c0

2P0l
, α1 =

κ1h0R0

4P0
− α

(2.10)

3. NONLINEAR EVOLUTIONARY EQUATIONS FOR DESCRIBING PERTURBATIONS
OF THE FLUID FLOW IN A VISCOELASTIC TUBE

Most evolutionary nonlinear equations can be obtained using the multiscale and perturbation techniques
which are now widely represented in the literature. Apparently, this technique was first used in [19]. The
system of equations (2.9) contains the small parameters

ε � 1

(
ε1 =

a0

R0
, ε2 =

R0

l
, ε3 =

h0

R0

)

where a0 is the radius perturbation amplitude. For arteries these parameters have the characteristic values
0.1, 0.4, and 0.2, respectively [14, 20]. Since the characteristic velocities of the pressure waves (pulse
waves) are high as compared with the flow velocities, in order to study the evolution of the perturbations
in the low-amplitude long wave approximation it is convenient to go over to “slow” time variables, having
distinguished the direction of wave propagation. As the parameter ε we will take the smallest of the above
parameters (ε ∼ 0.1). We will then seek the solution of the system of equations using the variables

η = ε2η ′, u = ε pu′, P = 1 + ε pP′, p ∈ N (3.1)

ξ = εm(x − t), τ = εnt, m, n ∈ N, n > m

∂
∂x

= εm ∂
∂ξ

,
∂
∂ t

= εn ∂
∂τ

− εm ∂
∂ξ

(3.2)

Substitution of (3.2) and (3.1) in (2.9), after cancelling the expressions in the first two equations by εm+ p

and in the last equation by ε p, leads to the system of equations

εn−mη ′
τ − η ′

ξ + u′ξ + ε p 1
2

η ′u′ξ + ε pu′η ′
ξ = 0

εn−mu′τ − u′ξ + ε pu′u′ξ +
1
α

P′
ξ = 0 (3.3)

P′ = ε2nγη ′
ττ − εn+m2γη ′

τξ + ε2m(γ − β )η ′
ξξ + εnλη ′

τ −

εmλη ′
ξ − εn+2mδη ′

τξξ + ε3mδη ′
ξξξ + αη ′ + ε pα1η ′2

We will seek the solution of this system in the form of an asymptotic expansion

u′ = u1 + εqu2 + o(εq); η ′ = η1 + εqη2 + o(εq)

P′ = P1 + εqP2 + o(εq), q ∈ N
(3.4)
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Substituting (3.4) in (3.3) and equating the coefficients of ε0, in the zeroth approximation we have the
following relations:

−η1ξ + u1ξ = 0, −u1ξ +
1
α

P1ξ = 0, P1 = αη1

Hence we obtain

u1(ξ , τ) = η1(ε , τ) + ψ(τ), P1(ξ , τ) = αη1(ξ , τ) (3.5)

where ψ(τ) is an arbitrary function determined from the boundary conditions for u1 and η1.
In deriving the evolutionary equations containing the derivative with respect to τ and the nonlinear term

uuξ , with allowance for the first approximation (∼ εq) we need to set n − m = p = q.

In this case we neglect the terms of higher order than n − m (n ≥ m) and, after eliminating P′, obtain
system (3.3) in the form:

εn−mη ′
τ − η ′

ξ + u′ξ + ε p 1
2

η ′u′ξ + ε pu′η ′
ξ = 0

εn−mu′τ − u′ξ + ε pu′u′ξ + ε2m γ − β
α

η ′
ξξξ + η ′

ξ + ε3m δ
α

η ′
ξξξξ + ε p 2α ′

α
η ′η ′

ξ = εm λ
α

η ′
ξξ

From this we obtain the equation

εn−m(η ′
τ + u′τ) + ε p

(
u′u′ξ +

1
2

η ′u′ξ + u′η ′
ξ +

2α1

α
η ′η ′

ξ

)
+

ε2m
(

γ − β
α

η ′
ξξξ

)
+ ε3m

(
δ
α

η ′
ξξξξ

)
= εm

(
λ
α

η ′
ξξ

)
(3.6)

Setting m = 1 and taking the relation n−m = p = q into account, we will consider three cases for p, q,
and n: (1) p = q = 1 and n = 2; (2) p = q = 2 and n = 3; and (3) p = q = 3 and n = 4.

The increase in the parameter n corresponds to the fact that with time the terms with the higher derivatives
play the determining role in the mathematical model.

We will now derive the evolutionary equations for describing perturbations in the flow through a vis-
coelastic tube.

We will begin by considering the first case (m = p = q = 1 and n = 2). Substituting (3.4) in (3.6) and
equating the coefficients of ε1, we obtain the equation

η1τ + u1τ + u1u1ξ +
1
2

η1u1ξ + u1η1ξ +
2α1

α
η1η1ξ =

λ
α

η1ξξ

hence with allowance for relations (3.5) we arrive at the evolutionary equation

η1τ =
[(

5
4

+
α1

α

)
η1 + ψ(τ)

]
η1ξ =

λ
2α

η1ξξ − ψ ′(τ)
2

(3.7)

Here, ψ(τ) gives a correction to the wave propagation velocity and when ψ(τ) �= const corresponds to a
source. The function ψ(τ) can be determined from relations (3.5).

Let ψ(τ) = η1|ξ=ξ0
− u1|ξ=ξ0

= 0, then equation (3.7) goes over into the Burgers equation
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η1τ +
(

5
4

+
α1

α

)
η1η1ξ =

λ
2α

η1ξξ (3.8)

If we use (2.7) and (2.10), the dimensionless coefficient of Eq. (3.8) can be expressed in terms of the
physical parameters of the model. The coefficient of the nonlinear term is determined from the formula

5
4

+
α1

α
=

1
4

+
R0

2
κ1

κ

Hence it follows that the ratio of the nonlinear and linear elasticities determines the steepness of the
nonlinear wave front. If the wall is linearly elastic, i.e., κ1 = 0, then α1 = −α and equation (3.8) takes the
form:

η1τ +
1
4

η1η1ξ =
λ

2α
η1ξξ

The coefficient of the second derivative in Eq. (3.8) has the form:

λ
2α

=
R0

4ρ lc0
µ

Thus, the wave attenuation is proportional to the resistance coefficient of the medium.
When ψ(τ) = const = ψ0 equation (3.7) can be reduced to (3.8) by means of the nondegenerate change

of variables
θ = ξ − ψ0τ , τ ′ = τ

Taking (3.1), (3.2), (3.4), and (3.5) into account, we can express the solution of the initial system of
equations in the form:

η(x, t) = εη ′(ξ , τ) 	 εη1(ξ , τ); u(x, t) = εu′(ξ , τ) 	 εu1(ξ , τ)	 εη1(ξ ,τ)

P(x, t) = εP′(ξ , τ) 	 εP1(ξ , τ) = εαη1(ε , τ), ξ = ε(x − t), τ = ε2t

We will now consider the second case (m = 1, p = q = 2, and n = 3). Substituting (3.4) in (3.6) and
equating the coefficients of ε2, we obtain the equation

η1τ + u1τ + u1u1ξ +
1
2

η1u1ξ + u1η1ξ +
2α1

α
η1η1ξ +

γ − β
α

η1ξξξ = 0 (3.9)

Taking (3.5) into account, from (3.9) we arrive at the evolutionary equation

η1τ +
[(

5
4

+
α1

α

)
η1 + ψ(τ)

]
η1ξ +

γ − β
2α

η1ξξξ = −ψ ′(τ)
2

(3.10)

Setting ψ ≡ 0, we obtain the Korteweg-de Vries equation:

η1τ +
(

5
4

+
α1

α

)
η1η1ξ +

γ − β
2α

η1ξξξ = 0 (3.11)

Using (2.7) and (2.10), we can represent the coefficient of the dispersion term in the form:

γ − β
2α

=
1
4

(
R0

l

)2 [
h0

R0

ρw

ρ
− 2(1 − σ 2)

σxx

E

]

Thus, the dispersion coefficient is determined by the ratio of the wall and fluid densities and the ratio of
the longitudinal wall stress to the elasticity modulus of the wall.
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An approximate solution of system (2.9) can be determined in terms of the solutions of the Korteweg-de
Vries equation by mean of the relations

η(x, t) = ε2η ′(ξ , τ) 	 ε2η1(ξ , τ);

u(x, t) = ε2u′(ξ , τ) 	 ε2u1(ξ , τ) 	 ε2η1(ξ , τ)

P(x, t) = ε2P′(ξ , τ) 	 ε2P1(ξ , τ) = ε2αη1(ε , τ),

ξ = ε(x − t), τ = ε3t

We will now consider the third case (m = 1, p = q = 3, and n = 4). Substituting (3.4) in (3.6) and
equating the coefficients of ε3, we obtain the equation

η1τ + u1τ + u1u1ξ +
1
2

η1u1ξ + u1η1ξ +
2α1

α
η1η1ξ +

δ
α

η1ξξξξ = 0 (3.12)

Taking (3.5) into account, from (3.12) we arrive at the evolutionary equation

η1τ +
[(

5
4

+
α1

α

)
η1 + ψ(τ)

]
η1ξ +

δ
2α

η1ξξξξ = −ψ ′(τ)
2

(3.13)

Setting ψ ≡ 0, we obtain the fourth-order nonlinear evolutionary equation

η1τ +
(

5
4

+
α1

α

)
η1η1ξ +

δ
2α

η1ξξξξ = 0 (3.14)

Using (2.7) and (2.10), we find that the coefficient of the fourth derivative has the form:

δ
2α

=
h0R0

4ρ l3c0
χ

Thus, the attenuation of the amplitude of the wave described by Eq. (3.14) is proportional to the coeffi-
cient of viscosity of the tube material.

An approximate solution of the initial system of equations (2.9) can be expressed by the formulas

η(x, t) = ε3η ′(ξ , τ)	 ε3η1(ξ , τ)

u(x, t) = ε3u′(ξ , τ) 	 ε3u1(ξ , τ) 	 ε3η1(ξ , τ)

P(x, t) = ε3P′(ξ , τ)	 ε3P1(ξ , τ) = ε3αη1(ε , τ)

ξ = ε(x − t), τ = ε4t

If we take the characteristic time for which the wave process is described by the Burgers equation as
unity, then, since ε ∼ 0.1, for the process described by the Korteweg-de Vries equation the characteristic time
will be of the order of 10 dimensionless units and for the process described by the nonlinear evolutionary
equation (3.14) the characteristic time will be of the order of 100 dimensionless units.

4. EXACT SOLUTIONS OF NONLINEAR WAVE EQUATIONS

It has been obtained that, when a fluid flows through a viscoelastic tube, at various instants of time the
fluid velocity divided by the quantity 5/4 + α1/α obeys the following evolutionary equations

ut + uux =
λ

2α
uxx (4.1)

ut + uux +
γ − β

2α
uxxx = 0 (4.2)

ut + uux +
δ

2α
uxxxx = 0 (4.3)
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Fig. 1. Solution of Eq. (4.3) at instants t = 0, 0.2, and 0.4 (curves 1–3, respectively)

The perturbations of the pressure and tube radius obey analogous equations.
The Burgers equation (4.1) and the Korteweg-de Vries equation (4.2) have been well studied. Using the

Cole-Hopf transform [21, 22], equation (4.1) can be reduced to the linear heat-conduction equation

u = −λ
α

∂ lnZ
∂x

, Zt =
λ

2α
Zxx

For Eq. (4.2) the solution of the Cauchy problem can be found using the inverse scattering transform
[23, 24].

We will study possible solutions of Eq. (4.3). In the traveling-wave variables u(x, t) = y(z), where
z = x − C0t, after integration over z, equation (4.3) takes the form:

C1 − C0y +
1
2

y2 + νyzzz = 0, ν =
δ

2α
(4.4)

As distinct from Eqs. (4.1) and (4.2), equation (4.3) does not belong to the class of equations which can
be solved exactly. This can be shown by checking the equations for the Painlevé property [24]. Assigning
y = a0/(z − z0)

p, we obtain p = 3 and a0 = 120ν . Assigning y = a0/(z − z0)
p + Λ(z − z0)

j−3 and
equating the terms of the first degree in Λ to zero, we find the Fuchs indices for (4.4): j1 = −1 and j2,3 =
(13 ± i

√
71)/2.

The two Fuchs indices are complex conjugate; therefore, equation (4.4) and, consequently, the nonlinear
evolutionary equation (4.3) do not belong to the class of equations which can be solved exactly.

In order to seek exact solutions of Eq. (4.4) we can use various methods. However, in what follows, we
will use the simplest-equation method [25], recently proposed by one of the authors of the present study,
which is a generalization of the approaches proposed earlier [26, 27].

As the general solution of Eq. (4.4) has a third-order pole, we can seek the solution of this equation in
the form:

y(z) = A0 + A1Y (z) + A2Y (z)2 + A3Y (z)3 (4.5)

where it is assumed that Y (z) must satisfy the Ricatti equation

Yz = −Y 2 + aY (z) + b (4.6)

After substituting (4.5) and (4.6) in Eq. (4.4) we find the coefficients

A3 = 120ν , A2 = −180νa, A1 = 90νa2, A0 = C0 + 15νa3, b = −a2/4

When C1 = C2
0/2 the solution of Eq. (4.4) takes the form:

FLUID DYNAMICS Vol. 41 No. 1 2006



NONLINEAR WAVES IN FLUID FLOW 59

Fig. 2. Evolution of a periodic pressure wave described by the Burgers equation (a) and Eq. (4.3) (b)

u(x, t) = C0 +
120ν

(x − C0t + C2)3 (4.7)

where C0 and C2 are arbitrary constants.
Figure 1 illustrates the solution of the problem described by Eq. (4.3) on a semi-infinite straight line for

a given boundary condition at the point x = 0 corresponding to (4.7) at times t1 = 0, t2 = 0.2, and t3 = 0.4.
In constructing the solutions we used the following parameters: C0 = −1.0, ν = 0.025, and C2 = 1.0. The
exact solution (4.7) was used for testing the numerical solutions described by the nonlinear wave equation
(4.3).

Periodic solutions of Eq. (4.4) can also be found by means of the simplest-equation method with al-
lowance for the third-order pole of the general solution of Eq. (4.4). If as the simplest equation we take the
equation for the Jacobi elliptic function, then the solution of (4.4) can be sought in the form:

y(z) = A0 + A1Q + A2Q2 + A3Q3 + B1Qz + B2QQz (4.8)

where the coefficients A0, A1, A2, B1, and B2 can be found after substituting (4.8) in Eq. (4.4) and Q(z) is a
solution of the equation for the Jacobi elliptic function

Q2
z − Q4 − aQ3 − bQ2 − cQ − d = 0 (4.9)

Substituting (4.8) in Eq. (4.4) and taking into account Eq. (4.9), after equating the expressions with the
same powers of Q(z) to zero, we obtain

A0 = C0 ± 15νc, A1 = ±30νb, A2 = ±45νa, A3 = ±60ν

B1 = −15νa, B2 = −60ν , d =
1
4

ac − 1
12

b2 (4.10)

C1 =
1
2

C2
0 − 20ν2b3 +

135
2

ν2bca − 135
2

ν2c2 +
45
8

ν2a2b2 − 135
8

ν2a3c

The solution expressed in terms of Jacobi elliptic functions has the form:

y(z) = C0 ± 15νc ± 30bνQ ± 45aνQ2 ± 60νQ3 − 15aνQz − 60νQQz

Here, Q(z) must satisfy Eq. (4.9) subject to limitation (4.10) on the parameter d.
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Fig. 3. Evolution of a solitary pressure wave as described by the Burgers equation (4.1) (a) and by Eq. (4.3) (b)

um

t

Fig. 4. Time dependence of the solitary pressure wave amplitude um as described by the Burgers equation (curve 1) and
Eq. (4.3) (curve 2)

5. NUMERICAL SOLUTIONS OF PROBLEMS OF PROPAGATION OF PERTURBATIONS
THROUGH A VISCOELASTIC TUBE

At present, there are no difficulties in numerically simulating the transfer through a viscoelastic tube of
a pressure pulse described by the Burgers and Korteweg-de Vries equations. The evolution of the pulse
dynamics described by these equations has been studied in detail (see, for example, [28–30]).

With time a pulse described by the Burgers equation decreases in amplitude due to dissipation and its
shape is simultaneously distorted due to nonlinearity.

The Korteweg-de Vries equation has solutions in the form of solitons transported in the medium without
distortion or dissipation. If the initial pulse does not correspond to the soliton solution, the original pulse
may break down into several solitons, each transported without distortion and at a constant velocity which
depends on the amplitude.

We will now consider the pressure pulse propagation through a viscoelastic tube described by Eq. (4.3).
For the numerical calculations we used an implicit two-layer five-point finite-difference scheme. For the
exact solution (4.7) the scheme gives a relative error of less than one per cent for coordinate and time steps
h = 0.05 and τ = h2.

Comparing the pressure pulses described by the Burgers equation and Eq. (4.3) for periodic boundary
conditions, it is possible to draw conclusions concerning the features of the waves obeying these equations.

As the initial profile, we took a periodic pressure pulse in the form u(x, 0) = cos(4/5πx) and a solitary
Gaussian pressure pulse u(x, 0) = exp(−4(x − 5)2) on a segment of length l = 10. In the calculations we
assumed that α , δ , and λ = 1.
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The higher derivatives in Eqs. (4.1) and (4.3) describe the dissipative processes. However, the dissipation
of the waves described by Eqs. (4.1) and (4.3) takes place differently (Figs. 2–4). For nonlinear waves of
the fourth-order evolutionary equation (4.3) the pressure pulses are additionally smoothed. In the linearized
case the shortwave harmonics in the initial profile are more rapidly damped than in the case of the Burgers
equation (4.1), while the longwave harmonics are more slowly damped.

Summary. Among the features of nonlinear wave propagation through a viscoelastic tube, we note that
in the initial stage (characteristic time t of the order of ε−1) the perturbations are damped in accordance with
the Burgers equation (4.1). In this stage the main wave dissipation factor is the resistance of the medium
in to the motion of the wall. In the second stage (t ∼ ε−2) the wave propagation can be described by the
Korteweg-de Vries equation (4.2). In this case the nonlinear waves travel without distortion of the wave
shape. The determining factor here is the purely elastic properties of the wall. In the third stage (t ∼ ε−3)
the nonlinear wave propagation obeys Eq. (4.3). This stage is characterized by smearing (damping) of the
waves. In this case the viscous properties of the wall are the main factor. The steepness of the wave profile
is determined by the nonlinear wall elasticity over the entire evolution of the perturbation.

The authors wish to thank A. V. Migita for useful discussions and the referee for valuable comments.
The work was carried out with financial support from the International Scientific and Technological Center
(project V-1213).
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