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The placenta is an essential component of the life-support system for the devel-
oping fetus, enabling nutrients and waste to be exchanged between the fetal and
maternal circulations. Maternal blood flows between the densely packed branches of
villous trees, within which are fetal vessels. Here we explore some of the challenges
of modelling maternal haemodynamic transport using homogenization approaches.
We first show how two measures can be used to estimate the minimum distance over
which the distribution of villous branches appears statistically homogeneous. We
then analyse a simplified model problem (solute transport by a unidirectional flow
past a distribution of point sinks) to assess the accuracy of homogenization approx-
imations as a function of governing parameters (Péclet and Damköhler numbers)
and the statistical properties of the sink distribution. The difference between the
leading-order homogenization approximation and the exact solute distribution is
characterized by large spatial gradients at the scale of individual villi and substan-
tial fluctuations that can be correlated over lengthscales comparable to the whole
domain. This study highlights the importance of quantifying errors due to spatial
disorder in multiscale approximations of physiological systems.

Keywords: placenta; homogenization; advection-diffusion-uptake; spatial point
processes

1. Introduction

The placenta is a vital organ for the fetus. It performs multiple simultaneous func-
tions, including exchange of blood gases between the maternal and fetal circulations
and supply of nutrients to, and removal of waste products from, the fetus. In hu-
mans, where the embryo implants within the interstitium of the uterus, the placenta
is highly invasive and haemochorial in organisation: in other words, maternal blood
emerging from spiral arteries in the uterine wall flows freely around chorionic villous
trees containing the fetal vessels [1, 2] (Figure 1(a)). This evolutionary strategy is
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Figure 1. (a) Schematic diagram (modified from [2], with permission) of the nearly
mature human placenta in situ, composed of the chorionic plate (CP) and the basal
plate (BP) surrounding the intervillous space (IVS). The villous trees containing fe-
tal vasculature (communicating with the fetus via the umbilical cord (UC)) project
from the CP into the IVS and are directly surrounded by maternal blood that
emerges from spiral arteries (SA) in the BP and circulates, as indicated by arrows
in lobule L1, to leave the IVS through the decidual veins (DV); terminal branches of
the chorionic villi are not shown in L1. Note the single villous tree in the peripheral
lobule L3, demarcated by the placental septum (S), as opposed to several trees in
the central lobule L2. (b) A cross-section of a normal peripheral placental lobule
showing villous branches in the IVS (section taken parallel to the BP, 1mm from
the decidua; optical magnification ×2.5).

shared between humans and only a few other species. The close maternal apposi-
tion makes human placental development and functioning vulnerable to maternal
disease. For example, in pre-eclampsia (associated with intra-uterine growth restric-
tion), inadequate invasion, raised maternal blood pressure and restricted maternal
blood flow into the placenta are thought to impair development of fetal blood vessels
and lead to reduced chorionic villous branching [3]. In maternal diabetes, there is
increased angiogenesis and increased villous tree branching [4]. In either case, nor-
mal transport processes are compromised. Damage to the fetus during pregnancy
can have immediate health implications as well as legacy effects which manifest
in adulthood [5]. There are therefore obvious benefits in developing systems-level
computational models of placental flow and transport that will help explain the
origins and implications of structural abnormalities in disease, and help reveal the
interactions between geometry, blood flow, growth and nutrient uptake that are
central to the function of this organ.

Despite its relative accessibility (using a freshly delivered term-placental perfu-
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sion system) and its medical importance, theoretical models of placental function
(summarized in [6]) remain relatively primitive. A particular challenge is the intri-
cate geometrical structure of the villous trees (Figure 1(b)), which is hard to char-
acterise, highly variable and prohibitively complex to simulate in detail. A natural
starting point in modelling maternal placental blood flow is to exploit the theory
of flow in porous media [7, 8]. We have recently used this approach to demonstrate
the importance of the calibre of maternal spiral arteries and decidual veins in de-
termining the overall flow resistance in a functional placental unit (or ‘placentone,’
containing a single villous tree) and to examine the factors that optimise nutrient
delivery [6].

Behind porous medium models lies the theory of homogenization [9–11], which
provides a systematic tool for characterising the bulk properties of materials in
terms of their fine-scale structure. This method is particularly well developed for
media with periodic microstructure. It is used for example to derive Darcy’s law
for viscous flow in a porous medium [12] and extensions that account for inertia
[13] and poroelasticity [14]. In physiology, Darcy’s law is widely used to simulate
interstitial flows; it has also recently been applied to describe homogenized flow
and transport within microcirculatory networks [15] when leakiness allows commu-
nication between nearby vessels. Through the use of volume-averaging procedures,
approximations have also been developed for materials with random microstruc-
ture [16]. For materials with statistically homogeneous and ergodic microstructure,
virtually all leading-order results for periodic media are directly applicable [12], in-
cluding Darcy’s law [17]; rigorous bounds on effective material properties for com-
posite materials are available [12]. However fewer results are available connecting
the statistical properties of the microstructure to the properties of the homogeniza-
tion residue (the difference between the leading-order approximation and the exact
solution) [18, 19].

In order to understand how the placenta functions as an organ of nutrient ex-
change, we here examine the combined effects of transport of solutes such as glucose
or oxygen by maternal blood flow and uptake by the fetal circulation in villous trees.
We can therefore call on prior studies [20–23] of the competition between advection,
diffusion and reaction in porous media or heat exchangers, characterized by a Péclet
number Pe (relating the strength of advection to diffusion) and a Damköhler num-
ber Da (relating the rate of reaction or uptake to diffusion). In addition to physical
parameters, it is equally important to characterize the geometry of villous branches.
Careful placental stereology (using systematic random sampling at the microscale)
has provided estimates of bulk quantities (e.g. total villous volumes, surface areas
and lengths) and local measures such as star volumes (the mean volume of all parts
of a space which are visible when viewed in all directions from a given point within
it) [24]. However further measures of placental anatomy, particularly of its statisti-
cal variability, are necessary in order to develop comprehensive models of placental
transport.

In this paper, we draw together a number of techniques and ideas that are useful
in developing multiscale stochastic models of nutrient transport in the human pla-
centa. Using histological images (Figure 1(b)), we illustrate in §2(a) how methods of
spatial statistics [25] can be used to characterize some of the important underyling
lengthscales in villous trees. We then use an idealised theoretical model (transport
under flow past a one-dimensional array of sinks, §2(b)) to assess how governing
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Figure 2. (a) An inverted rotated binary image of the cross-section shown in Fig-
ure 1(b), used to compute villous area fraction (the proportion of white space) in
an observation window (solid square (top left) indicates the window size of about
1 mm); (b) the corresponding spatial point process generated by the centres of mass
of villous cross-sections (after despeckling and watershedding, N = 976 points); (c)
dependence of villous area fraction φ on window size W , taken from the top-left
(solid) and top-right (dashed) corners of the sample in (a); (d) square root of the
corresponding K-function (2.3) (solid) vs. correlation distance r; dashed lines indi-
cate 95%-confidence interval (±2 standard errors) for the K-function of a Poisson
process, computed using (2.4).

parameters (Pe, Da) and the statistical properties of the sink distribution together
affect the accuracy of homogenization approximations (§2(c, d)). We show in par-
ticular how randomness leads to large fluctuations in solute distributions that can
be correlated over surprisingly long distances.

2. Methods

(a) Imaging and spatial statistics

A peripheral lobule of the human placenta was used for the histological study, as
it tends to contain a single chorionic villous tree matched with a spiral artery, and
is therefore more representative of a single placental circulatory unit [2, 6]. A single
maternal lobule, obtained from a normal full-term placenta (delivered by elective
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cesarian section), was frozen in nitrogen-cooled isopentane before cutting according
to a systematic random sampling protocol. 8µm-thick sections were stained with
tolonium chloride (Toluidine Blue), revealing the chorionic villi and the medium-
to-large blood vessels within them. An example is shown in Figure 1(b), using
QImaging MicroPublisher 5 Mpx camera and a Zeiss Axioplan microscope. We
used ImageJ to identify villous branch outlines (Figure 2(a)) and compute their
area fraction φ as a function of window size W [26]. Centres of mass of each branch
(Figure 2(b)) enable us to interpret villous branch locations as a spatial point process
to which we can apply appropriate statistical methodology [25].

Let N(A) represent the number of points lying within an area A. The first- and
second-order intensities of this process are

λ(x) =
E[N{dA(x)}]
|dA(x)|

, λ2(x1,x2) =
E[N{dA(x1)}N{dA(x2)}]

|dA(x1)||dA(x2)|
. (2.1)

in the limit |dA(x)| → 0, where dA(x) is an infinitesimal area around a given
point x. The density λ is the expected number of points per unit area. The two-
point correlation function λ2 is the normalised joint number of points expected
around two given points in space. For a stationary isotropic point process, for which
λ = constant, λ2(x1,x2) = λ2(|x1 − x2|) [12]. The K-function [25] is the average
number of points within a given distance r from an arbitrary point x0, scaled with
λ, where

K(r) =
1
λ

E[N{x : |x− x0| ≤ r}] =
2π

λ2

r∫
0

λ2(t)t dt. (2.2)

For a completely random spatial point (Poisson) process, K = πr2 and λ2 = λ2. For
n points in a given rectangular domain of area |A| and perimeter P (as in Figure
2(b)), we employ Ripley’s estimate K̂ for the K-function defined as

K̂(r) =
|A|

n(n− 1)

n∑
i,j=1
(i6=j)

w−1
ij I(|xi − xj | ≤ r), (2.3)

where I is an indicator function and wij is Ripley’s trigonometric weighting function
to correct for edge effects [25].

We use the K-function to estimate the cross-correlation of intervillous distances
and to test the pattern for regularity or clustering, as compared to the complete
spatial randomness represented by a Poisson point process [25]. For the latter, we
use

E[K̂Poisson] = πr2, Var[K̂Poisson] = |A|2 (2b(r)− a1(r) + (n− 2)a2(r))
n(n− 1)

, (2.4)

where a1(r) = |A|−2(0.21Pr3 + 1.3r4), a2(r) = |A|−3(0.24Pr5 + 2.62r6) and b(r) =
πr2|A|−1(1−πr2|A|−1)+ |A|−2(1.0716Pr3 +2.2375r4) are Lotwick and Silverman’s
polynomials [27]. We estimate K̂ in (2.3) and (2.4) using the Kest function of
the Spatstat package for R [28]; (2.4b) is exact for r not exceeding 1/4 of the
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smallest side of a rectangular domain [27]. Measurements of area fraction φ and the
K-function for placental tissue are discussed in §3(a) below.

(b) A model problem for solute uptake

As a simple representation of solute uptake by a villous tree, such as within
lobule L1 in Figure 1(a), we consider a one-dimensional array of N identical point
sinks of strength q0, distributed across a domain 0 ≤ x∗ ≤ L. The distance L repre-
sents a typical pathlength between spiral artery and decidual vein, passing multiple
villous trees; for example see [6]. The typical distance between two adjacent sinks
is l = L/(N + 1) and we assume ε ≡ l/L � 1. A solute with steady concentration
distribution C∗(x∗) is swept past the sinks by a uniform flow field u0 and diffuses
between them with diffusion coefficient D; the concentration C0 at the inlet (rep-
resenting a spiral artery) is prescribed and the concentration at the outlet is set to
be zero. The concentration field is assumed non-negative, so that if q0 is sufficiently
large an internal free boundary at x∗ = x∗0 arises such that C∗ > 0 for 0 < x∗ < x∗0,
and C∗ = 0 for x∗0 ≤ x∗ ≤ L. Writing C∗(x∗) = C0C(x), x∗ = lx, x∗0 = lx0, the
dimensionless solute distribution satisfies

PeCx = Cxx −Daf(x) for 0 ≤ x ≤ min(x0, ε
−1), (2.5a)

C(0) = 1, (2.5b)

C(ε−1) = 0 or C(x0) = Cx(x0) = 0 for 0 < x0 < ε−1, (2.5c)

where Pe = u0l/D is a Péclet number and Da = q0l/(DC0) a Damköhler number,
each defined using the inter-sink distance. Solute uptake is assumed to follow zeroth-
order kinetics, the sinks being represented by

f(x) =
N∑

i=1

δ(x− ξi) (2.6)

for the ordered sink locations 0 < ξ1 < ξ2 < · · · < ξN < 1. For convenience we
define ξ0 = 0 and ξN+1 = 1 and define ∆i ≡ ξi − ξi−1 (i = 1, . . . , N + 1).

Motivated by the spatial patterns in Figure 2(b), we consider four sink distri-
butions, allowing us to mimic structural features that are potentially of relevance
to villous trees:

(i) f = fp, say, a periodic distribution with ξi = i, ∆i = 1 for 1 ≤ i ≤ N ;

(ii) f = fu, say, a uniformly random distribution where ξi are ordered values
drawn from independent U [0, ε−1] distributions, implying εξi ∼ Beta(i,N +
1 − i) and ε(∆1, . . . ,∆N ) ∼ Dirichlet(ξ|α) where ξ = (ξ1, . . . , ξN ) and α =
(1, 1, . . . , 1) ∈ RN [29];

(iii) f = fh(d), say, a Matérn hard-core type-II distribution, whereby sinks are
drawn sequentially from a uniformly random distribution and are accepted
provided they do not fall within a distance d of an existing sink or boundary,
the process being continued until N sinks are reached [25];

(iv) f = fn(σ), say, a normally-perturbed periodic distribution satisfying ξi ∼
N (i, σ2), for some variance σ2, with periodic conditions imposed on sinks

Article submitted to Royal Society



Homogenizing transport in the placenta 7

falling outside the domain. Sinks are reordered if they swap positions (as
occurs for sufficiently large σ).

In the limit d → 0, fh tends to fu; in the limit d → dcr, fh exhibits increas-
ing regularity, where dcr is an upper bound estimated empirically to be close to
π/
√

18 ≈ 0.74 [30]. All distributions have the first-order intensity λ = 1. The pop-
ulation autocorrelation of the inter-sink distance, defined by

R∆(n) =
E [(∆i − E[∆i]) (∆i+n − E[∆i+n])]

Var[∆i]
, (2.7)

satisfies R∆(n) = 0 for n > 0 and small σ for f = fn (reflecting indepen-
dent sink locations) and (using standard properties of Dirichlet distributions [31])
R∆(n) = −1/(N +2) for n > 0 for f = fu (i.e. a large gap between sinks is compen-
sated by reduced gaps elsewhere); simulations (taking the mean from an ensemble
of realisations of each process) confirm that R∆(n) . n−1 for all three random
distributions (when d = 0.65, σ = 10, data not shown), implying that there is no
substantial long-scale correlation in the sink distributions.

We simulate realisations of each distribution and compute the transport problem
(2.5) over each distribution using a semi-analytical method, matching concentration
fluxes at each sink. Mesh convergence was checked by validation against the results
obtained by the finite-element solver COMSOL Multiphysics and exact solutions
in simple cases. Results are presented in §3(b, c) below, tested against predictions
from homogenization approximations that we now develop for periodic and random
sink distributions.

(c) Homogenization approximation: periodic sinks

We develop asymptotic approximations of (2.5) in the limit ε → 0 using ho-
mogenization. When f = fp a standard approach may be adopted, described in
Appendix A, the outcomes of which we summarize briefly here. The concentra-
tion field is represented by a two-scale expansion of the form C(x) = C(0)(X) +
εC(1)(x,X) + ε2C(2)(x,X) + . . ., where X = εx characterises the slow variation
of the solution over lengthscales comparable to the whole domain, while x charac-
terises rapid variations over a ‘unit cell’ surrounding an individual sink.

Key features of the concentration field over a periodic distribution of sinks are
summarised in Figure 3. Diffusive, advective and uptake fluxes across the whole
domain balance when DC0/L ∼ u0C0 ∼ q0N , which corresponds to Da = O(ε2),
Pe = O(ε). For given ε, this defines an organising centre in (Pe,Da)-parameter
space (Figure 3(a)). A second organising centre lies at Pe = O(1), Da = O(ε).
By deriving distinct asymptotic limits for C around each organising centre, we
can obtain a comprehensive overview of the homogenization approximation across
parameter space. This provides useful perspective before focusing on parameters
appropriate for specific solutes.

We first set Pe = εp, Da = ε2q and assume p, q = O(1) as ε → 0. C(0) then
satisfies pC

(0)
X = C

(0)
XX−q (see (A 5)). The two-parameter solution for C(0) (given by

(A 6)) encompasses four distinct limits, denoted UA, UD, D, and A in Figure 3(a), in
which different physical effects dominate. Representative solutions, illustrating the
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Figure 3. (a) Asymptotic regimes in (Pe,Da)-parameter space for transport past
a periodic sink distribution with ε � 1. Solid lines demarcate six distinct regions
(uptake-dominated UD, UA, Us

A; diffusion-dominated D; advection-dominated A,
As). The lightly shaded region above the dashed lines indicates the domain of weak
convergence of the homogenization approximation to the exact solution (in the L2

but not the H1 norm); the homogenization approximation fails in the darker shaded
region for large Da. (b) Concentration profiles (A 6a) for representative points (1)-
(5) in the parameter space (Pe = 1, ε2, ε2, 1, ε−1 and Da = ε0.6, 2ε2, ε3, ε1.4, 1 re-
spectively), showing the leading-order approximation C(0) (1-4) and the full solution
(5) computed with ε = 0.05; circles show the locations of the 19 sinks. (c) Correc-
tions C(1) given by (A 12a) at points (1) and (5), within a unit cell with the sink
at x = 0.

form of C(0) in each region of (Pe,Da)-parameter space, are shown in Figure 3(b)
at points (1), (2), (3), (4) respectively. Briefly:

• in region D (p � 1, q � 1, illustrated by point (3)), C(0) ≈ 1−X, representing
diffusion between the boundary source and sink, the distributed sinks and
advection being too weak to have any effect at leading order;

• in region UD (p � 1,max(1, p2) � q � ε−2, illustrated by point (2)), C(0) ≈
(1− (X/X0))

2 for 0 ≤ X ≤ X0 =
√

2/q � 1 and C(0) = 0 otherwise,
representing uptake by the distributed sinks balancing diffusion;

• in region UA (1 � p � ε−1, p � q � p2, illustrated by point (1)), C(0) ≈
1− (X/X0)− (1/pX0)e

−p(X0 −X) for 0 ≤ X ≤ X0, with ε � X0 ≈ p/q � 1,
representing uptake by the distributed sinks balancing advection (outside a
diffusive boundary layer near X = X0);

• in region A (1 � p � ε−1, q � p, illustrated by point (4)), C(0) ≈ 1 −
e−p(1−X), representing dominant advection, supplemented by diffusion close
to the outlet.
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In the neighbourhood of Pe = O(ε), Da = O(ε2), the first correction εC(1) van-
ishes, while the second correction ε2C(2) (see (A 8)) is proportional to Da. This
rises to O(ε) as Da approaches O(ε), violating the assumed structure of the original
asymptotic expansion, and indicating breakdown of the homogenization approxi-
mation along Pe � 1, Da = O(1). Furthermore, the correction within the unit cell
develops an internal boundary layer (in x) of width 1/Pe adjacent to the sink as
Pe increases through unity (compare points (1) and (5), Figure 3(c)), signalling the
development of ‘staircases’ in the concentration profile, occuring in regions As and
Us

A in (Pe,Da)-space (Figure 3(a, b)). To capture these, a new expansion must be
constructed near the second organising centre at Pe = O(1),Da = O(ε). Writing
Da = εq1 with q1 = O(1) as ε → 0, we find that here C(0) decreases linearly from
the inlet (see (A 10)), before terminating in a diffusive boundary layer either up-
stream of, or at, the downstream boundary (illustrated respectively by points (1)
and (4) in Figure 3b); the correction C(1) satisfies (A 12).

To assess the difference between the leading-order homogenized and exact solu-
tions to (2.5), we define the homogenization residue (or corrector) as

rε ≡ C(x)− C(0)(X). (2.8)

For periodic sink distributions, we estimate the residue using rε ≈ εC(1) for Pe =
O(1) (and rε ≈ ε2C(2) for Pe = O(ε)) and assess its magnitude under the (weak)
mean-squared and (strong) Sobolev norms:

‖f(X)‖2L2
≡

1∫
0

f2 dX, ‖f(X)‖2H1 ≡ ‖f‖2L2
+ ‖fX‖2L2

. (2.9)

The convergence of C(0) to C across parameter space is discussed in §3(b) below.

(d) Homogenization approximation: random sink distributions

For the random sink distributions (f = fu, fh or fn in (2.5)), the same leading-
order problem (A5) for C(0) emerges. This is readily shown via averaging over long
spatial scales, following [32]. Thus we can again make direct use of the parameter-
space map in Figure 3(a).

We use two approaches to determine the size and statistical properties of the
residue (2.8). When Pe = O(ε) and Da = O(ε2) (and diffusion dominates advection
at the microscale), we can determine the statistics of rε directly (see Appendix
B). The fluctuations rε are related to linear combinations of the sink locations ξi,
weighted by the slowly varying coordinate X. Evaluation of E(rε) (see (B 9)) yields
the homogenized ODE (A 5a), while we find that the pointwise variance satisfies

Var(rε) ≈

{
ε3σ2q2X(1−X) for f = fn, σ = O(1),
1
12εq2X2(1−X)2 for f = fu.

(2.10)

(The equivalent expression for f = fh is harder to obtain and is left for further
work.) The variance varies smoothly with X, vanishing at either end of the domain
where the concentration is prescribed. When the sinks are almost periodic (f = fn
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10 I.L. Chernyavsky, L. Leach, I.L. Dryden and O.E. Jensen

in (2.10)), fluctuations about C(0) are of magnitude O(ε3/2) (in the L2 norm),
whereas these rise substantially (to O(ε1/2)) when there is greater disorder in the
sink locations (f = fu).

For larger Pe, we compute rε for f = fu, fh and fn using Monte Carlo sim-
ulations of (2.5). We estimate its convergence in mean E [‖rε‖L2 ] by evaluating
integrals with trapezium quadrature. We also estimate Var(rε) and the transverse
covariance

CovT (rε(x)) ≡ E
[
(rε(x)− E[rε(x)])

(
rε(ε−1 − x)− E[rε(ε−1 − x)]

)]
, (2.11)

which characterises the degree to which fluctuations are correlated across the do-
main. Results are presented in §3(c) below.

3. Results

(a) Imaging

Figure 2(c) shows how the villous area fraction φ depends on the size W of the
window used to compute it. When W is comparable to the diameter of terminal villi
(below 100 µm), we see vigorous oscillations of φ, depending whether the window
falls in villous tissue or intervillous space. As W increases, variations in φ fall and
are significantly reduced for W & 1 mm. Above this threshold, we can reasonably
treat the intervillous space in this sample as a continuous medium of uniform (or
at least slowly varying) area fraction, as was assumed in [6] for example.

In Figure 2(d), the estimated K-function (2.3) for the distribution of centres of
villous branches is compared to that expected of a homogeneous Poisson process
(with confidence intervals). The two are indistinguishable, for the given sample,
at inter-point distances r & 0.1mm. Figure 2(d) also shows that no points fall
within approximately 25µm of each other and that, for r < 0.1mm, points are more
regular than they would be if distributed uniformly randomly (resembling a hard-
core process). This in part reflects the finite size of terminal villous branches, of
typical diameter 50µm (Figure 1(b)).

(b) Accuracy of the homogenization approximation for periodic sink distributions

We now explore how the spatial distribution of villous branches, represented by
point sinks in (2.5), the strength of flow past these sinks (represented by Pe) and
the sink strength (represented by Da) together determine patterns of uptake. The
placenta acts as exchange organ for numerous different solutes, each of which is
characterized by its own values of Pe and Da. We wish to assess the accuracy of
the leading-order homogenization approximation C(0) across parameter space.

We first review concentration profiles over a periodic array (Figure 3). For given
Pe, there is a critical Da (see (A 6b)), equivalent to

Dacr(Pe) =
Pe2ePe/ε

(Pe/ε− 1)ePe/ε + 1
, (3.1)

such the solute is fully absorbed within the domain (i.e. for X ≤ X0 < 1) for Da >
Dacr(Pe). This threshold in (Pe,Da)-space asymptotes to the boundary between
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asymptotic regions U and UD for Pe � ε (when Dacr ≈ 2ε2) and the boundary
between regions A and UA (and AS and US

A) for Pe � ε (when Dacr ≈ εPe). Thus
(3.1) demarcates a region where uptake by sinks can be considered optimal: for
Da > Dacr, all the solute is absorbed upstream of the outlet, making some sinks
redundant; for Da < Dacr, substantial solute escapes past the sinks to the outlet.
Of particular relevance for common nutrients such as glucose and oxygen in the
placenta is the regime in which Pe is order unity or larger [6], which we illustrate
using point (5) in Figure 3. In this case the correction to C(0) develops an internal
boundary-layer within each unit cell. For sufficiently large Da and Pe, this leads
to a ‘staircase’ structure in the exact solution (Figure 3(b, c)). Leading-order solute
distributions, such as those computed in [6], fail to capture these significant local
variations in the solute field.

We now survey (Pe,Da)-space to assess regimes of weak or strong convergence of
the residue (2.8) (i.e. ‖rε‖L2 → 0 or ‖rε‖H1 → 0 as ε → 0 respectively). For Pe � 1,
we find that ‖rε‖L2 = O(Da) and ‖rε‖H1 = O(Da/ε) (using (A 8)), implying strong
convergence for Da � ε. This reveals a region of parameter space (Pe � 1, ε �
Da � 1) where the correction to C(0), while bounded, has large gradient. For Pe �
1, we find that ‖rε‖L2 = O(Da/Pe) and ‖rε‖H1 = O(Da/ε

√
Pe) (using (A 13)),

implying strong convergence for Da � ε
√

Pe. We can therefore split (Pe,Da)-space
into three regions (Figure 3(a)): in the unshaded region below the dashed line there
is strong convergence of the homogenization approximation; the weakly shaded
region above the dashed line is characterised by weak convergence in which C(0) fails
to capture large gradients at the microscale; and the homogenization approximation
fails in the dark-shaded region at large Da. In the regime of particular physiological
significance (point (5)), convergence is weak.

(c) Accuracy of the homogenization approximation for random sink distributions

The homogenised leading-order solution (A 6a) is applicable not only to a pe-
riodic array but also for a statistically homogeneous random distribution of sinks
of the same average density. We now test it against simulations using the three
stochastic sink distributions described in §2(b): a uniformly random distribution
(fu), a Matérn hard-core distribution (fh) and a perturbed periodic distribution
(fn).

We consider point (5) in Figure 3(a), for which C(0) = 1−X. As advection dom-
inates diffusion at the microscale, the exact solution for any realisation of the sink
distribution becomes an irregular staircase, exhibiting distinct plateaux between
clusters of sinks. Even though the sink distributions are stationary processes that
are not correlated over multiple sinks (§2(d)), the residues rε for f = fu and fh (Fig-
ure 4(a, b, d, e)) show long-scale correlation: the variance is proportional to X(1−X)
and the transverse covariance (proportional to X2 in 0 < X < 1

2 and (1 −X)2 in
1
2 < X < 1) suggests that fluctuations are correlated over lengthscales compara-
ble to the full domain, the correlation being greatest away from boundaries. rε for
f = fn with σ = 10 also shows evidence of long-scale correlation (Figure 4(c, f)); in
this case the variance and transverse covariance are approximately uniform across
the domain (outside boundary layers at X = 0 and X = 1).

Figure 4(g, h) shows how the magnitude of the residue depends on d (for fh)
and σ (for fn), for different values of ε. (Recall that for d = 0, fh is equivalent to fu,
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Figure 4. (a-c) Homogenization residue rε = C − C(0) (solid) scaled by ε−1/2 for (a)
uniformly random, (b) hard-core (d = 0.65) and (c) normally perturbed (σ = 10)
point processes for ε = 0.001, Pe = 10, Da = εPe. Dashed line shows population
mean from n = 1000 samples, dotted line shows mean ± two standard deviations.
(d–f) Variance (solid) and transverse covariance (2.11) (dashed), scaled with ε−1,
corresponding to (a-c) (the dotted line shows X(1−X) in (d)). (g, h) Dependence of
homogenization error (estimated from n =1000 samples) on the minimal inter-sink
distance d for f = fh (g) and on the standard deviation σ for f = fn (h) (scaled
by ε−1/2 for ε = 0.1, 0.01, 0.001; Pe = 10, Da = εPe). Error bars are ±2 standard
errors (SE), where SE =

√
Var(||rε||L2)/n, calculated using a standard unbiased

estimate.

and that fn resembles fu for sufficiently large σ.) Collapse of the data for different ε
indicates that in both cases the residue E(‖rε‖L2) is O(ε1/2) for sufficiently small d
and sufficiently large σ (as expected from [18]), although the error falls in magnitude
as the distributions become more regular (either by increasing d towards dcr or
reducing σ close to zero). Indeed for σ = 0 the residue has exactly the scaling
predicted by asymptotics for the periodic sinks, namely ‖rε‖L2 ≈ 0.451ε (for Pe =
10, Da = εPe). The magnitude of the residue approaches the value of the uniformly
random distribution for εσ & 0.3.

When diffusion dominates at the microscale (Pe = O(ε), Da = O(ε2)), the
pointwise variance again varies smoothly over the whole domain, as we show ana-
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lytically in (2.10) (see also Appendix B). However its magnitude depends strongly
on the degree of periodicity in the underlying structure, with fluctuations rising
from O(ε3/2) for almost periodic sink distributions to O(ε1/2) for uniformly ran-
dom sink distributions. Correspondingly, the range of validity of the homogenization
approximation when f = fu is significantly smaller than in the periodic case: we
estimate that this requires Da � ε3/2 for Pe � ε and Da � ε1/2Pe for Pe � ε.

4. Discussion

Heterogeneous and disordered biological media such as the human placenta require
careful consideration of statistical variability when simulating transport processes,
both in characterising the underlying geometry and in understanding the impact of
randomness on physical processes. Regarding the former, we have illustrated how
sampling villous area fraction and estimation of the K-function (Figure 2(c, d)) re-
veal important intrinsic lengthscales in the distribution of villous branches. For the
sample considered, our data show no evidence against uniformly random distribu-
tions patterns of villous trees over sufficiently large distances and no evidence of
underlying periodicity that would give rise to clear steps in the K-function [33]. The
K-function instead resembles a hard-core distribution at shorter lengthscales (Fig-
ure 2(d)), consistent with the requirement that branches cannot overlap. Further
development of semi-automated image analysis, e.g. in watershedding segmenta-
tion algorithms [26], should allow bulk processing of histological data and reduce
systematic errors. Future studies can be used to fit parameters of suitable spatial
models to histological data and to assess how these features of tissue architecture
may vary during development, in disease and between individuals.

In the absence of highly resolved measurements of maternal blood flow and so-
lute distributions within the intervillous space, we chose here to examine nutrient
transport using a simple theoretical model that incorporates spatial disorder in
sink distributions. The model ignores many important features of placental haemo-
dynamics, such as the finite size of villous branches, complex uptake kinetics for
specific nutrients (glucose, amino acids, lipids etc.) that may be mediated by active
transport mechanisms in the syncytiotrophoblast on the outer surface of villous
branches [34], the non-Newtonian rheology of flow in intervillous space (and the
associated hematocrit distributions, that would determine the oxygen-carrying ca-
pacity of maternal blood), higher-dimensional transport processes such as Taylor
dispersion [35], flow and tissue inhomogeneities (for example near spiral artery
outlets [6]) and distortion of villous branches by flow. It is important that future
transport models including each of these refinements are evaluated against data as
they become available. Instead we have used our simplified model to illustrate some
generic features of homogenization approximations for disordered media, which we
hope will provide a useful foundation for more sophisticated simulations of placental
function.

While periodic or random sink distributions share similar leading-order approx-
imations (through the slowly varying concentration field C(0)(X)), the accuracy of
this approximation depends on parameter values (Pe, Da and ε) and sink statis-
tics. We classified asymptotic parameter regimes in (Pe, Da)-space (Figure 3(a)), in
which different balances between diffusion, advection and uptake are locally dom-
inant at the macroscale. For the regime of greatest interest physiologically (point
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(5)), convergence of C(0) to the exact solution is weak (applying in the L2 but not
the H1 norm), because corrections have large spatial gradients on lengthscales be-
low the inter-sink distance. Such fine-scale features, not captured by leading-order
homogenization, are likely to be of importance in models that resolve the detailed
arrangement of fetal vessels within villous branches.

The magnitude of the difference between the homogenization approximation
and the exact solution depends on how one chooses to measure it. In a weak (L2)
norm, the residue with a periodic sink distribution is typically O(ε) (for example
for Pe = O(1), Da = O(ε)), falling to O(ε2) at sufficiently low Pe and Da. However
when sinks have a uniformly random distribution, the residue (in the appropriate
norm) rises to O(ε1/2) in both cases ((2.10), Figure 4(a, b)). The magnitude of
the residue falls for distributions with a greater degree of periodicity ((2.10), Fig-
ure 4(g, h)) but grows with increasing sink strength. Significantly, even when sink
distributions are correlated only over short distances, the residues appear to be cor-
related over distances comparable with the domain size when advection dominates
at the macroscale (figure 4(d, e, f)). This is also the case when diffusion dominates
at the microscale, as revealed by estimates of the transverse covariance (data not
shown). While the distribution of villous branches in a placental unit (Figure 2) is
significantly more complex than the simple distributions employed in Figure 4, one
can estimate ε crudely to be between 0.001 and 0.01, suggesting errors in homog-
enization approximations due to stochasticity of up to 10% that fluctuate across
distances comparable to an individual lobule.

Homogenization approaches provide a powerful tool in multiscale modelling and
are likely to figure prominently in future integrative models of other tissues with
fine-grained periodic or random microstructure (such as the liver [36]). However this
study shows the merits of stepping beyond the leading-order approximation in order
to resolve fine-scale structures at the microscale and, perhaps more importantly, to
assess carefully the magnitude and nature of cumulative (and parameter-dependent)
errors that arise from stochastic variation. These errors must be interpreted using
the language of non-smooth functions and distributions. Such steps will be particu-
larly important when building complex models that integrate numerous competing
processes, in order to avoid errors arising at each level of approximation from ac-
cumulating and disrupting the overall predictive capacity of the model.

Appendix A. Homogenization for periodic sink distributions

We seek solutions of (2.5) in the form C(x) = C̃(x,X), introducing a slowly varying
spatial variable X = εx that becomes independent of x as ε → 0 (at least in a sense
of weak two-scale convergence [11]), allowing derivatives to be expressed as

d
dx

=
∂

∂ x
+ ε

∂

∂ X
. (A 1)
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We further assume that C̃(x,X) is an x-periodic function with a period 1. Substi-
tuting (A 1) into (2.5) gives

Pe(C̃x + εC̃X) = C̃xx + 2εC̃xX + ε2C̃XX , (x 6= n) (A 2a)

C̃|X=0 = 1, (A 2b)

C̃|X=1 = 0 or C̃|X=X0 = C̃X |X=X0 = 0, 0 < X0 ≤ 1, (A 2c)[
C̃x + εC̃X

]
x=n

= Da, (A 2d)

for n = 1, 2, . . . , N , setting X0 = εx0 and assuming continuity of C̃ across sinks.
We first address the case Pe = O(ε) and Da = O(ε2), setting Pe = εp, Da = ε2q

and assuming p, q = O(1) as ε → 0. We substitute the expansion

C̃(x,X) = C(0)(x,X) + εC(1)(x,X) + ε2C(2)(x,X) + . . . (A 3)

into (A 2) and collect terms in powers of ε, assuming the C(i) are O(1) as ε → 0.
At O(1), we find that C(0) = C(0)(X). The homogeneous problem at the following
order has the solution C(1) = 0. Competition between advection, diffusion and
uptake emerges at O(ε2), where

pC
(0)
X = C(2)

xx + C
(0)
XX , (A 4a)

[C(2)]x=0 = 0, [C(2)
x ]x=0 = q, C(2)|X=0 = 0, (A 4b)

C(2)|X=1 = 0 or C(2)|X=X0 = C
(2)
X |X=X0 = 0 (A 4c)

It is convenient here to consider a representative unit cell occupying − 1
2 < x < 1

2
with the sink at x = 0. Averaging (A 4a) over a unit cell, and assuming periodicity
of C

(2)
x , we recover

C
(0)
XX − pC

(0)
X = q, (A 5a)

C(0)|X=0 = 1, C(0)|X=1 = 0, (A 5b)

or C(0)|X=0 = 1, C(0)|X=X0 = C
(0)
X |X=X0 = 0, (A 5c)

for some 0 ≤ X0 ≤ 1. The solution to (A 5) is

C(0)(X) =


(

q
p − 1

) e pX − 1
e p − 1

− q
pX + 1, 0 < X < 1, q ≤ Q(p)

q
p2

e pX − 1
e pX0

− q
pX + 1, 0 < X < X0, q > Q(p)

(A 6a)

where

Q(p) =
p2e p

(p− 1)e p + 1
, X0 = − 1

pe−pX0 + q+p2

pq . (A 6b)

The internal free boundary at X = X0 < 1 must be considered when the sink
strength is large enough for all the solute to be abosrbed upstream of X = 1.
The two-parameter solution (A 6) encompasses four distinct limits (illustrated in
Figure 3), denoted D, A, UD and UA, in which different effects dominate respec-
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16 I.L. Chernyavsky, L. Leach, I.L. Dryden and O.E. Jensen

tively. On the boundaries between these regions of parameter space we recover
one-parameter solutions which capture a balance between two effects. Specifically,
diffusion between the boundary source and sink balances advection along p = O(1),
q � 1, where (A 6) reduces to C(0) ≈ 1 − (e pX − 1)/(e p − 1), independent of the
distributed sinks; diffusion between the boundary source and sinks balances up-
take by the distributed sinks along q = O(1), p � 1, where (A 6) reduces to
C(0) ≈ 1

2qX2 − ( 1
2q + 1)X + 1 for q ≤ 2, independent of advection; and ad-

vection balances uptake by the distributed sinks along q = O(p), p � 1, where
C(0) ≈ 1 − (q/p)X + e−p ((q/p)− 1) (e pX − 1) (for q ≤ p). This limit includes a
boundary layer of width 1/p near the boundary sink at X = 1, across which ad-
vection balances diffusion locally. A further balance arises along q = O(p2), q � 1,
where q > Q(p) and diffusion and advection locally balance uptake (independent of
the downstream boundary sink); here C(0) ≈ 1 − (q/p)X + (q/p2)e−pX0(e pX − 1)
and X0 ≈ 2/p.

Having determined C(0), the second correction C(2) satisfies

C(2)
xx = −q, [C(2)]x=0 = 0, [C(2)

x ]x=0 = q, (A 7)

subject to periodicity over the unit cell and a calibration condition 〈C(2)〉 = con-
stant, where 〈f〉 ≡

∫ 1/2

−1/2
f dx. Thus

C(2)(x) = − q
2

(
x2 − |x|+ 1

6

)
+ 〈C(2)〉, (− 1

2 ≤ x ≤ 1
2 ). (A 8)

We impose C(2)|x=0+ = C(2)|x=0− = 0, so that C(2) satisfies the boundary condi-
tions (A 4b,c), implying that 〈C(2)〉 = q/12. This signals the development of pro-
nounced humps in the concentration profile as q increases. We investigate these
by inspecting the second organising centre in parameter space, at Pe = O(1),
Da = O(ε).

We set Pe = O(1) and Da = εq1 with q1 = O(1) as ε → 0. Expanding as before
using (A 2) and collecting terms in powers of ε, we again find at leading order that
C(0) = C(0)(X). At O(ε1),

C(1)
xx − PeC(1)

x = PeC(0)
X , (A 9a)

[C(1)]x=0 = 0, [C(1)
x ]x=0 = q1, (A 9b)

C(1)|X=0 = 0, C(1)|X=1 = 0 or C(0)|X=X0 = C
(0)
X |X=X0 = 0. (A 9c)

Averaging (A 9a) over the unit cell, assuming periodicity of C
(1)
x and incorporating

the jump in C
(1)
x at the sink, leads to PeC(0)

X = −q1, C(0)|X=0 = 1, which has the
linear solution

C(0) = 1− q1

Pe
X, (0 ≤ X < min(X0, 1)), (A 10)

where q1/Pe ≤ 1 if the concentration profile extends to the outlet (X = 1), and
q1/Pe = 1/X0 if the solute concentration drops to zero at X = X0 < 1. In order
to satisfy the downstream boundary condition on C(0) at X = 1 or X = X0 it is
necessary to include a diffusive boundary which is not preserved in this scaling, but
which is as described in Regions UA and A above.

To determine C(1), we note that the source terms C
(0)
X and q1 in the linear
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system (A9a,b) are independent of x, so that superposition may be used to find a
solution in the form

C(1)(x,X) = −b(x)PeC(0)
X + a(x)q1 = q1

(
a(x) + b(x)

)
, (A 11)

where a(x) and b(x) are continuous with unit period and satisfy the cell problems
axx − Pe ax = 0, [ax]0+0− = 1, bxx − Pe bx = −1, [bx]0+0− = 0. After some algebra, it
follows that

C(1)(x) =
q1

Pe

(
−

exp
(
Pe
(
x± 1

2

))
2 sinh(Pe/2)

+ x +
2± Pe
2Pe

)
+ 〈C(1)〉, (A 12a)

for 0 < ∓x ≤ 1/2. As before, the global boundary conditions (A 9c) are used to
derive the local condition C(1)(0) = 0, implying

〈C(1)〉 =
q1

2Pe

(
ePe/2

sinh(Pe/2)
− 2 + Pe

Pe

)
=

q1

2Pe

(
coth(Pe/2)− 2

Pe

)
, (A 12b)

therefore 〈C(1)〉 ≈ q1
2Pe (1 −

2
Pe ) at large Pe � 1 and 〈C(1)〉 ≈ q1

12 at small Pe � 1,
so that C(1) in (A 12a) tends to εC(2) in (A 8) with error O(q1Pe). For large Pe,
the correction is approximately

C(1) =
q1

Pe
(
x± 1

2

)
+ 〈C(1)〉+ O(Pe−1), (0 < ∓x ≤ 1/2) (A 13)

the discontinuity across the sink being smoothed over a distance (in x) of 1/Pe.
This gives rise to staircase-like solutions in regions Us

2 and As in Figure 3.
We also observe from (A12a) that the asymptotic approximation for Pe � 1

breaks down when q1/Pe = O(ε−1), i.e. Da ∼ Pe, making εC(1) of the same order
as C(0) in (A 3). Overall, the homogenization approximation applies for Da �
max(1,Pe), as shown in Figure 3(a).

Appendix B. Homogenization for random sink distributions

When sinks are distributed non-periodically we can derive the homogenized ap-
proximation of (2.5) as follows. We focus on the case Pe = O(ε), Da = O(ε2), again
writing Pe = εp and Da = ε2q. We initially use (A 1) to rewrite (2.5, 2.6) as

C̃xx + 2εC̃xX + ε2C̃XX − εp
(
C̃x + εC̃X

)
= ε2qf,

C̃|X=0 = 1, C̃|X=1 = 0.
(B 1)

(For brevity we assume here that C̃ does not fall to zero upstream of X = 1).
Expanding using (A 3), we allow C(1) and C(2) to have fluctuations, assuming that
these are not large enough to disrupt the proposed expansion. At leading order,
C

(0)
xx = 0, C(0)|X=0 = 1 and C(0)|X=1 = 0. Thus C(0)(x,X) = Ã(X)x + B̃(X)

for some Ã and B̃. The first term must be suppressed to avoid secular growth, so
that C(0) = C(0)(X). Likewise at the following order we find that C(1) = C(1)(X).
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Collecting the terms in (B 1) at O(ε2), we obtain

C(2)
xx = q(f − F ), where qF (X) ≡ C

(0)
XX − pC

(0)
X , (B 2)

with f given by (2.6). This is to be solved subject to C(1) = C(2) = 0 at x = 0
and x = ε−1. Thus in ξi < x < ξi+1, for i = 0, 1, 2, . . . , N , treating x and X as
independent,

C(2) = − 1
2qF (x− ξi)2 + αi(x− ξi) + βi (B 3)

for some αi, βi, taking ξ0 = 0 and ξN+1 = ε−1. We define ∆i ≡ ξi − ξi−1 (for i =
1, 2, . . . , N + 1) and (Ri, Si, Ti, Ui) ≡

∑i
j=1(ξj ,∆2

j , ξj∆j , ξ
2
j ) so that ξi ≡

∑i
j=1 ∆j

and

i∑
j=1

ξjξj−1 ≡ Ui−1 + 1
2 (ξ2

i −Si),
i∑

j=1

∆j(j−1) ≡ (Ti−Ri)−Ti−1 = iξi−Ri. (B 4)

Integrating (B 2) across x = ξi gives, for i = 1, 2, . . . , N

αi = αi−1 + q (1− F∆i) , (B 5a)

βi = βi−1 − 1
2qF∆2

i + αi−1∆i. (B 5b)

We take β0 = 0 to satisfy C(2) = 0 at x = 0. From (B 5), for i = 1, 2, . . . , N ,

αi =α0 + q(i− Fξi), (B 6a)

βi =− 1
2qFSi + α0ξi + q

∑i
j=1∆j(j − 1− Fξj−1). (B 6b)

Substituting (B 6) into (B 3), expanding and using (B 4) gives, after some algebra,

C(2) = − 1
2qFx2 + α0x + q [ix−Ri] where ξi ≤ x < ξi+1. (B 7)

Imposing C(2) = 0 at x = ε−1 ≡ N + 1 gives α0 = 1
2qFε−1 − q [N − εRN ], and so

C(2) = 1
2qFx(ε−1 − x) + q [x(εRN + i−N)−Ri] , (ξi ≤ x < ξi+1). (B 8)

This expression relates solute fluctuations directly to sink distributions.
When f = fn, then ξi ∼ N (i, σ2) ∼ i + σN (0, 1), ∆i ∼ N (1, 2σ2) ∼ 1 +√

2σN (0, 1) and Ri ∼ 1
2 i(i+1)+σ

√
iN(0, 1). To evaluate the distribution of εxRN−
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Ri we must sum independent distributions. Setting x = X/ε,

XRN −Ri =X

N∑
j=1

ξj −
i∑

j=1

ξj = (X − 1)
i∑

j=1

ξj + X

N∑
j=i+1

ξj

∼(X − 1)
i∑

j=1

N (j, σ2) + X

N∑
j=i+1

N (j, σ2)

∼(X − 1)N
(

1
2 i(i + 1), σ2i

)
+ XN

(
1
2N(N + 1)− 1

2 i(i + 1), σ2(N − i)
)

∼N
(

1
2N(N + 1)X − 1

2 i(i + 1), σ2[i(X − 1)2 + (N − i)X2]
)

∼ε−2N
(

1
2X(1−X), σ2ε3X(1−X)

)
+ . . .

writing i = (X/ε)+ (i−x), retaining (i−x) as an O(1) quantity. We therefore find
from (B 8) that (after some algebra), for ξi ≤ x < ξi+1,

E(C(2)) = 1
2

q

ε2
(F − 1)X(1−X) + 1

2q(x− i)(i + 1− x). (B 9)

To ensure the original expansion is asymptotic, we must therefore take F = 1
at O(ε−2), yielding (A 5a) for C(0). Simulations indicate that the contribution at
O(ε−1) (and hence C(1)) vanishes. Similarly we find that

Var(C(2)) = ε−1σ2q2X(1−X) + O(1), (B 10)

in agreement with simulations (not shown). CovT (C(2)) can be determined in a
similar manner. Thus while C(2) has O(1) mean, rε is dominated by fluctuations
of relative magnitude O(ε3/2). This approximation holds as long as sinks do not
exchange places, which can be expected once σ becomes sufficiently large. (B 10)
suggests that the fluctuations in the case of stronger mixing of sink locations will
be larger than O(ε3/2).

When f = fu, we turn to Matuswana [29], who determined the distribution
of linear combinations of order statistics drawn from U(0, 1) (i.e. combinations of
ξ̂1, ξ̂2, . . . , ξ̂N , where ξ̂i ≡ εξi) as a mixture of scaled Beta distributions. Writing
LN =

∑N
i=1 aiξ̂i for some ai, and defining bj =

∑N
i=j ai, LN has mean and variance

∑N
j=1 bj

N + 1
and

∑N
j=1 b2

j

(N + 1)(N + 2)
−

(∑N
j=1 bj

)2

(N + 1)2(N + 2)
(B 11)

respectively [29]. Writing R̂i =
∑i

j=1 ξ̂j and setting LN = XR̂N − R̂i we have
aj = X − 1 for 1 ≤ j ≤ i and aj = X for i + 1 ≤ j ≤ N , and hence

bj =

{
(X − 1)(i− j + 1) + X(N − i) (1 ≤ j ≤ i),
X(N − j + 1) (i + 1 ≤ j ≤ N).

(B 12)

Evaluating appropriate sums of bj and again writing x = X/ε, i = (X/ε) + (i− x)
(taking |i− x| = O(1)), we find to leading order in ε using (B 11) that XRN − Ri
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has mean and variance

1
2ε−2X(1−X) and 1

12ε−3X2(1−X)2 (B 13)

respectively. We thereby recover (B 9) (after some algebra), requiring that F =
1 + O(ε), so once more C(0) satisfies (A 5a). Furthermore, assuming Var(C(1)) = 0,
we obtain Var(rε) = 1

12q2εX2(1 −X)2 to leading order in ε, consistent with sim-
ulations. Thus fluctuations about C(0) are O(ε1/2). Furthermore, simulations show
that E(rε) ≈ 1

2εqX(1−X), suggesting a contribution from C(1) which presumably
must be determined by a closure condition at higher order.
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