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The primary exchange units in the human placenta are terminal villi, in which

fetal capillary networks are surrounded by a thin layer of villous tissue, sep-

arating fetal from maternal blood. To understand how the complex spatial

structure of villi influences their function, we use an image-based theoretical

model to study the effect of tissue metabolism on the transport of solutes from

maternal blood into the fetal circulation. For solute that is taken up under

first-order kinetics, we show that the transition between flow-limited and

diffusion-limited transport depends on two new dimensionless parameters

defined in terms of key geometric quantities, with strong solute uptake pro-

moting flow-limited transport conditions. We present a simple algebraic

approximation for solute uptake rate as a function of flow conditions, meta-

bolic rate and villous geometry. For oxygen, accounting for nonlinear

kinetics using physiological parameter values, our model predicts that villous

metabolism does not significantly impact oxygen transfer to fetal blood,

although the partitioning of fluxes between the villous tissue and the capillary

network depends strongly on the flow regime.
1. Introduction
The human placenta is an unusual and often overlooked organ. During

pregnancy, it supplies the developing fetus with all its essential nutrients,

removes its waste products and has a range of additional endocrine functions

[1]. Placental insufficiency compromises fetal growth and can have a life-long

impact on the later health of the individual [2]. As an exchange organ, the pla-

centa’s geometric structure plays a crucial role in determining its function. With

three-dimensional imaging revealing placental morphological complexity in

ever greater detail [3–5], it is important to look at placental structure through

the prism of the physical transport processes taking place within it. This

allows us to identify the geometrical features that dictate transport capacity,

and to characterize in quantitative terms the pathological consequences of

structural abnormality.

The present study contributes to a growing literature in which mathematical

and computational models have been used to provide insight into placental

physiology. These studies have addressed the fetal circulation (involving net-

works of blood vessels confined within villous trees), the maternal circulation

(involving blood flowing outside the branches of the trees, effectively through

a porous medium) and solute exchange across the trophoblast barrier between

them. Recent reviews are provided by Serov et al. [6], Jensen & Chernyavsky [7]

and Plitman Mayo [8]. Here we focus on the primary structural exchange unit
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associated with the fetal circulation, namely the terminal

villus: this is effectively a protruding ‘leaf’ on a villous tree

that contains an irregular network of fetal capillaries. The

thin-walled villus is bathed in maternal blood, allowing dis-

solved gases and nutrients to pass between fetal and

maternal blood. If blood flow in the capillaries is insufficient

to carry available solute we term the transport ‘flow-limited’;

if diffusion through villous tissue is the dominant barrier to

exchange, we term the transport ‘diffusion-limited’.

Pearce et al. [5] constructed a regression equation describ-

ing maternal-to-fetal solute transport in a terminal villus, by

taking a harmonic average of limiting approximations for

solute fluxes valid under flow-limited and diffusion-limited

conditions. As explained by Jensen & Chernyavsky [7], this

expression is naturally expressed in terms of suitable dimen-

sionless parameters, namely a Damköhler number Da that

measures solute transit time across the villous tissue due to

diffusion relative to transit time through the villus due to

flow, and a parameter m that measures the relative diffusive

capacities of the villous tissue and the intravillous capillary

network. Erlich et al. [9] added a further refinement to the

regression equation and then validated it using compu-

tational simulations of four villus specimens, each having

complex internal structure. The significant physical par-

ameters in their analysis were the solute diffusivities in

tissue and plasma (Dt and Dp, respectively), the effective vis-

cosity of blood h (based on an assumption of Newtonian

flow), a dimensionless parameter B that captures the

advective boost that oxygen acquires from binding to haemo-

globin [10], and the imposed pressure drop DP driving blood

through the vessel network. This analysis also revealed some

of the key geometric parameters determining the transport

capacity of a villus for most solutes: the flow resistance of

the capillary network per unit viscosity (R=h, which has

dimensions of inverse volume); the total length of capillary

vessels within the villus Lc; and a lengthscale L capturing

the diffusive capacity of villous tissue (a normalized diffusive

flux integrated over an exchange area). A key finding from [9]

is that, for the majority of physiologically relevant solutes

studied, the diffusive capacity ratio m ¼ DtL=D pLc was suffi-

ciently small among all specimens studied for the effects of

concentration boundary layers within capillaries to be a sec-

ondary factor. Then, assuming the solute is not absorbed

by villous tissue, transport was predicted to be flow-limited

when Da� 1 and diffusion-limited when Da� 1, where

Da ¼ DtLR
BDP

: (1:1)

The solute flux N is well approximated [5,9] by

N ¼ Nmax

1þ Da þDaF
1=3

, (1:2)

where Nmax ¼ DtDcL represents the maximum diffusive

capacity of the villus under a solute concentration difference

Dc between maternal and fetal blood. Setting aside the term

involving DaF ; m2Da/166.4 (a correction accounting for

concentration boundary layers), (1.2) captures the transition

from flow-limited transport (N � Nmax=Da ¼ B(DP=R)Dc)

to diffusion-limited transport (N � Nmax) as flow strength

(Da21) increases from low to high values. The simple

expressions in (1.1) and (1.2) show how physical processes

and villous geometry together influence solute transfer. In

particular, they demonstrate how, for given flow conditions,
different solutes can have widely varying values of Da

(through differing values of Dt/B), implying that flow-

limited and diffusion-limited transport may take place

simultaneously in the same villus.

This approach can be used to understand the transport of

solutes that pass passively through villous tissue. For some

solutes, however, the situation is not so simple, either because

active transport is required (in the case of amino acids [11]) or

because the solute is absorbed by villous tissue. We consider

such solutes here, focusing inter alia on oxygen, a proportion

of which can be taken up by villous tissue before reaching

fetal blood [12,13]. Our primary goal is to refine the estimate

of solute transfer N to account for this uptake. We use simu-

lations to compute the transfer rate in terminal villi recovered

from imaging using confocal microscopy. To describe uptake

of a generic solute under linear (first-order) kinetics, we intro-

duce a kinetic parameter a that describes the uptake rate by

villous tissue, and then present a modified version of (1.2)

that expresses uptake in terms of Da and a. We identify

two new dimensionless parameters

U ¼
Acap

ffiffiffiffiffiffiffiffiffiffiffi
a=Dt

p
L and W ¼ a‘2

Dt
, (1:3)

where Acap is the area of the capillary interface within the

villus and ‘ is a lengthscale (that we compute) relevant to

solute uptake under flow-limited conditions. We show how

the transition from flow-limited to diffusion-limited trans-

port, which occurs when Da�1 � 1 þW when U � 1,

instead occurs when Da�1 � U when U � 1. We then

extend our study to consider nonlinear uptake kinetics

associated specifically with oxygen metabolism, exploiting

parameters that we determine from ex vivo perfusion

measurements, and examine the influence of flow on the par-

titioning of oxygen fluxes between placental tissue and fetal

blood. Our results suggest that oxygen uptake by terminal

villous tissue has surprisingly limited impact on oxygen

flux to the fetus.
2. Methods
2.1. A mathematical model for feto-placental transport
We summarize the computational model briefly here, providing

technical details in appendix A. We model steady-state solute

transport in an intravillous feto-placental capillary network as

an advection–diffusion–uptake problem, extending existing

models [5,9,14] to account for tissue metabolism.

Three-dimensional images of villous microvasculature and

the accompanying syncytiotrophoblastic shell (figures 1 and 2,

insets) were segmented and meshed from stained confocal

microscopy of four specimens taken from two different peripher-

ial lobules of a normal human placenta at term, as reported

previously [9,14,15]. For each villous specimen, the images

reveal the spatial domain Vb occupied by the capillary network.

This is bounded by an inlet surface Gin, an outlet surface Gout and

the capillary endothelium Gcap (figure 5a in appendix A). The

network is embedded in villous tissue, with exterior surface,

Gvil, representing the interface with maternal blood. A fixed

solute concentration cmat is specified at Gvil. Using a Newtonian

(Stokes flow) approximation, our model simulates the flow of

fetal blood entering through Gin and leaving via Gout, driven by

a pressure difference DP imposed between the inlet and outlet.

In the fetal capillaries, solutes are advected by blood flow and

undergo diffusion. In the villous tissue that forms the bulk
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Figure 1. Features of transport of a generic solute in a terminal villus, assuming first-order kinetics. (a,b) Concentration fields in tissue are shown in a slice through
specimen 3 under diffusion-limited and flow-limited conditions at metabolic rate a ¼ 10 s21. The villous surface is fully oxygenated due to the condition c ¼ cmat

on Gvil (shown in dark red). Vessel cross-sections appear as white inclusions. (a) In the extreme diffusion-limited case, c ¼ 0 at the capillary surface, Gcap. (b) In the
extreme flow-limited case, n � rc ¼ 0 at Gcap. (c) Concentration slices (over part of the same surface shown in a, b) for the diffusion-limited case, with uptake
rate a ranging over two orders of magnitude. Concentration boundary layers form at the villous surface Gvil as a increases. (d) ‘Hotspots’ emerge with increasing
metabolism: only where Gcap and Gvil are in close proximity can solute penetrate to capillaries. The top figure shows the capillary surface Gcap of specimen 3 in the
same spatial orientation as panels a, b, with vessel cross-sections shown in white. Colours show the concentration at Gcap for the extreme flow-limited case. The
lower panel shows a different projection of the same simulation. (Online version in colour.)
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between the capillary surface Gcap and villous surface Gvil, we

assume there is no flow and the solute concentration c is assumed

to obey a diffusion–uptake problem Dtr2c ¼ q(c), where Dt is

the solute diffusivity in tissue and q(c) is the tissue solute

metabolic rate. In the present study, we consider first a generic

solute (such as a dilute suspension of polystyrene nano-particles

or other environmental pollutants [16,17]) characterized by the

first-order kinetics

Dtr2c ¼ a c, (2:1)

where a is the rate of solute uptake by tissue, assumed uniform.

We then model oxygen metabolism, using nonlinear Michaelis–

Menten kinetics [18,19],

Dtr2c ¼ qmax
c

c50 þ c
, (2:2)

where qmax is the maximum rate of oxygen metabolism and c50 is

the concentration at which the metabolic rate reaches 50% of its

maximum (table 1 summarizes parameter values from the litera-

ture). For c� c50, (2.2) approaches (2.1) with a ¼ qmax/c50. In

keeping with prior physiological literature [24], (2.2) can also

be approximated (more empirically) using a � qmax/cmat. Note

that under linear kinetics, using (2.1), transport depends on a

and Dt in the combination a/Dt, as reflected in the parameters

U and W in (1.3).

Our computational model for three-dimensional flow and

transport was implemented in COMSOL Multiphysicsw 5.3a, as

described in [9]. A specific challenge of the modelling of trans-

port is the emergence of boundary layers within the tissue

when the uptake rate is high (corresponding to U � 1), which

required a particularly fine mesh resolution near the villous sur-

face. The meshes of the villous domain used in figures 1–3 had

approximately 20 million tetrahedral elements. Owing to the
weaker uptake in figure 4, a less detailed mesh was required

(315 000 tetrahedral elements). In the latter case, a mesh conver-

gence test revealed a change in the solute uptake of at most 2%

upon increasing the number of tetrahedral elements from 0.3 to

4 million.

In addition to full advection–diffusion–uptake computations,

we employed a set of simulations of transport by diffusion and

uptake alone, satisfying (2.1) subject to simplified boundary

conditions appropriate to flow-limited and diffusion-limited transport

(described in appendix B).
2.2. Ex vivo measurement of placental oxygen
metabolism

In order to inform models of oxygen transport, we conducted

experiments to estimate values of q and c50 for use in (2.2). All

tissues were acquired from two full-term human placentas deliv-

ered at St Mary’s Hospital, Manchester, UK, with appropriate

informed written consent and ethics approval (15/NW/0829).

Ex vivo dual perfusion was established in an isolated lobule, as

described previously [27,28]. Briefly, each placental lobule was

perfused via a peristaltic pump at an inflow rate of

14 ml min21, oxygen concentration of 21% (volume per cent in

air) delivered via a single cannula from the maternal side, and

at 6 ml min21, 0% O2 from the fetal side. Oxygen in tissue was

recorded using a needle-type optical oxygen sensor (PyroScience

FireStingO2 OXF500PT; Aachen, Germany) with an outer diam-

eter of 500 mm and diameter of the tip of 230 mm. The optical

sensors were 2-point calibrated as per the manufacturer’s

instructions.

To record the tissue oxygen metabolic rate, the lobule was

perfused until the oxygen reading reached a steady value. The
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Figure 2. Symbols show predictions of computational simulations of the full advection – diffusion – uptake problem (appendix A); curves show predictions of the
simple regression equation (3.2). The four panels show results for the four vasculatures used in [9]; capillaries and the villous surface are illustrated by insets for each
case in orange and blue, respectively. Each panel shows the net uptake N as a function of the inlet – outlet pressure drop DP, for no solute uptake (a ¼ 0, identical
with fig. 2 in [9]) and increasing uptake (a ¼ 1, 10 s21; Dt ¼ 1.7 � 1029 m2 s21). (Online version in colour.)

Table 1. Reference parameter values used in the model (see table 2 for comparison of O2 kinetics in different tissues and table 3 for villous geometric
quantities).

parameter units value reference

DP Pa �10 – 102 [9]

h Pa . s 2 � 1023 [9]

B,O2 1.4 � 102 [5]

qmax,O2 mol . (m3 . s)21 �1023 – 1021 [13,20,21]

qmax,glucose/fructose mol . (m3 . s)21 �1023 – 1022 [22,23]

c50,O2 mol . (m3)21 �1023 – 1021 [21,24]

cmat,O2 mol . (m3)21 0.7 � 1021 (�50 mmHg) [5]

cmat,glucose mol . (m3)21 �1 – 10 [22,25]

cmat,fructose mol . (m3)21 �1022 – 1021 [25,26]

Dt,O2 m2 s21 1.7 � 1029 [5]

Dt,glucose m2 s21 �10212 – 10211 [9]

Dt,fructose m2 s21 �10213 – 10212 [9]

UO2 �0.01 – 0.1

Uglucose �0.01 – 1

U fructose �1 – 10
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oxygen drop-off curve (figure 6a in appendix C) was recorded

after cessation of both maternal and fetal inflows, while the

needle-type oxygen probe was held at a fixed position approxi-

mately 8 mm below the decidual surface. The measured

oxygen decay rate was fitted to a nonlinear Michaelis–Menten

law to estimate parameter values; details are provided in

appendix C.
3. Results
3.1. Transport with linear uptake kinetics
We first consider a model of linear uptake kinetics for a generic

solute, as described by (2.1). Predictions of the computational

model are shown in figure 1. To show the possible range of
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For weak uptake (U � 1), Da21 � 1; for strong uptake (U � 1),
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parameters are reported in table 3. (Online version in colour.)
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behaviour, we first show the extreme cases of diffusion-limited

transport (with negligible solute concentration in the capillary,

a limit addressed in two spatial dimensions in [29]) and

flow-limited transport (when the solute concentration in the

capillary equilibrates with the surrounding tissue, so that

there is negligible flux across the capillary surface); these

simplified limits are described in more detail in appendix

B. In both cases, the solute concentration falls with distance

from the villous surface, but does so more rapidly under

diffusion-limited conditions (figure 1a,b). These concentration

fields were computed assuming a moderate metabolic rate

(a ¼ 10 s21, for which U � 1:17). The impact of changing a

is demonstrated in figure 1c, which shows how, under

diffusion-limited conditions, concentration gradients become

steeper as the uptake rate increases. For sufficiently large a

(i.e. U � 1), most transport is reduced to a thin boundary

layer (of thickness
ffiffiffiffiffiffiffiffiffiffiffi
Dt=a

p
) near the villous surface, signifi-

cantly reducing the solute flux reaching more internal

capillaries. This is illustrated in figure 1d, which shows the

solute concentration at the capillary surface Gcap for specimen

3 in the flow-limited regime (the same scalebar applies as in

figure 1c). The solute concentration on Gcap (and therefore

the flux across the capillary surface) is highly heterogeneous

in this example. As tissue metabolism increases, localized

regions of concentration (hotspots) become more pronounced

and solute transport becomes increasingly focused at a few

regions at which the distance between the capillary and villous

surfaces is locally minimal.

The symbols in figure 2 show computational predictions

of the solute flux N entering four fetal capillary networks
versus the pressure drop DP driving flow through the net-

work, obtained using the full advection–diffusion–uptake

model for the four specimens investigated. In each case, N
rises approximately linearly with small DP (under flow-

limited conditions) before saturating at large DP (under diffu-

sion-limited conditions). In the absence of uptake, we can

use equation (1.2) to describe the flux/pressure-drop

relationship: N � Nmax/Da/ DP when Da21� 1, and N �
Nmax when Da21� 1, where Nmax is specific to each villus

(see appendix B). The symbols in figure 2 also show that

the impact of increasing the uptake parameter a is to

reduce N by an amount that diminishes slightly as DP
increases. Overall, the change in metabolic uptake from a ¼ 0

to a ¼ 1 s21 causes a relative decrease in solute net uptake N
of at most 16%, considering all pressure drops across all four

specimens.

To extend these predictions beyond the specific cases

studied, it is helpful to approximate the relationship between

N and DP using a regression equation that incorporates rel-

evant geometric parameters as well as the effect of

metabolism. (Our regression strategy is to identify simple

algebraic expressions that capture key relationships with

reasonable accuracy, rather than unwieldy but more precise

formulae.) To generalize equation (1.2), we first focus on

how metabolism affects the extreme flow-limited and diffu-

sion-limited transport fluxes NFL and NDL. Computing

these cases independently for each specimen, we determine

the metabolic dimensionless scale functions G(a) and F(a)

that vary between 0 and 1 (appendix D, figure 7) for which

NFL ¼ Nmax Da�1G(a) and NDL ¼ NmaxF(a): (3:1)

A simple algebraic approximation for generic solute uptake

under linear kinetics across both flow-limited and diffusion-

limited transport regimes is then provided by constructing

the harmonic mean of NFL and NDL as

N ¼ 1

1=NDL þ 1=NFLþ(Da
1=3
F =Nmax)

¼ Nmax

1=F(a)þDa=G(a)þDaF
1=3
: (3:2)

This result provides an approximation for the net flux

through any villus, requiring only a small set of compu-

tations of equation (2.1) under different boundary

conditions, from which L (and hence Nmax), F and G can be

determined. Figure 2 shows that equation (3.2) provides a

reasonable approximation of numerical solutions of the full

advection–diffusion–uptake problem. (The boundary layer

correction DaF
1=3 in (3.2) is not essential to this argument but

it improves the accuracy of the approximation at intermediate

Da.) The largest relative error between computational results

and equation (3.2) across all specimens and all pressure

drops is 33% and occurs in specimen 3.

The regression equation (3.2) reveals the factors defining

the transition between flow- and diffusion-limited transport.

Specifically, this arises when the two primary terms in the

denominator are of comparable magnitude, i.e. when Da21 �
F(a)/G(a). This relationship is plotted for all four specimens

in figure 3. The thresholds between the diffusion-limited and

flow-limited regimes collapse onto a near-universal curve

when F/G is plotted not against a but instead against the

non-dimensional parameter U given in equation (1.3). This
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parameter emerges from an analysis of the large-a limit,

described in appendices D and E.

For weak metabolism (U � 1), the solute distribution

resembles that in the no-uptake limit discussed in [9], for

which F and G are both close to unity. Uptake in this case

takes place across the whole volume of the villous tissue;

this limit is examined further in appendix F and is relevant

to oxygen transport, as explained below. For solutes that

are taken up strongly by villous tissues, delivery to fetal

blood takes place via hotspots, i.e. local minima in the dis-

tance between Gcap and Gvil that are sufficiently small to

penetrate the solute boundary layer adjacent to Gvil (as illus-

trated in figure 1d). We show in appendices D and E how

common features between flow- and diffusion-limited trans-

port explain the scaling relationship F=G � U when U � 1.

Both functions decay exponentially fast as U increases (with

metabolism becoming the dominant barrier to delivery to

the fetus), but G falls off faster than F with increasing

uptake (appendix D, figure 7), lowering the N versus DP
curve more at low flow rates than at high flow rates, and

hence promoting flow-limited transport relative to

diffusion-limited transport when uptake is sufficiently strong.

In addition to the lengthscale L (identified in our pre-

vious study [9]), the capillary surface area Acap becomes an

important geometric determinant when solute uptake is

strong (appendix E). By contrast, when solute uptake is

weak (appendix F) we identify an independent geometric

quantity (the lengthscale ‘, appearing in the parameter W
in (1.3)) which captures the weak-uptake approximation

Da � 1þW (see the inset to figure 3). ‘2 is determined by

solving Poisson’s equation over the villous volume, and is a

normalized measure of the solute reduction by uptake

through the tissue, communicated to the internal capillaries

by diffusion.

In summary, we have shown how uptake of a generic

solute in villous tissue under first-order kinetics reduces the
rate of delivery of solute to the fetus (figure 2). We have quan-

tified this reduction under flow-limited and diffusion-limited

conditions, showing a greater impact in the former case and

implying that stronger fetal flows are needed to achieve maxi-

mal delivery in the presence of uptake (figure 3). By using

appropriate dimensionless parameters (Da, U and W), we

have identified relationships that are independent of the details

of individual villous geometries. We now specialize our study

to consider the important case of oxygen transport and uptake.
3.2. Nonlinear oxygen metabolism
To establish the effect of metabolism on oxygen transfer in a

realistic physiological context, we consider a Michaelis–

Menten reaction-kinetics model for solute uptake in villous

tissue, equation (2.2). The model parameters are given in

table 1. In particular, the Michaelis–Menten parameters

qmax and c50 are informed by a novel ex vivo oxygen measure-

ment study discussed in detail in appendix C. The parameter

values emerging from this experimental study are compared

with the literature values in other metabolizing tissues in

table 2. The ex vivo measured maximal rate of placental

tissue metabolism qmax agrees with the lower end of meta-

bolic activity reported in other tissues (table 2, with the

brain and cardiac tissue being more metabolically active).

However ex vivo estimates suggest high variability in the

‘half-maximal metabolic rate’ concentration c50, which

appears larger in the human placenta than in other tissues

(table 2), indicating that a first-order kinetics approximation

could be appropriate in less oxygenated regions of the

intervillous space.

Figure 4a shows the predicted solute uptake N of the fetal

capillary network versus the inlet–outlet pressure drop DP
using the specimen 3 geometry (coloured symbols). We con-

sider three cases: c50� cmat (red symbols), when we expect to

recover zeroth-order kinetics; c50 ¼ cmat (blue symbols), when



Table 2. Characteristic kinetic parameters for oxygen metabolism in different tissues. Oxygen solubility is taken to be 1.35 � 1023 mol/(m3 . mmHg) [30],
tissue density is �103 kg m23, and the molar volumetric content of oxygen (at 378C) is taken equal to �40 mmol/(ml O2).

tissue qmax, mol/(m3 . s) (ml/(kg . min)) c50, mol . m23 (mmHg) reference

brain (mouse, in vivo) �1022 [31]

brain (rat, ex vivo) �1021 (�140) �1023 (�0.8) [24]

brain �1021 (140) �1023 (1) [18,21]

liver (rat, ex vivo) �1021 (�88) �1023 (�2.2) [24]

tumour �1022 (15) �1023 (1) [18,21]

cardiac parenchyma �1022 – 1021 �1024 (�0.05) [30]

placenta (human, ex vivo) �1023 – 1022 (2 – 11) [13,20]

placenta (ex vivo, this study) �1022 (�10) �1022 – 1021 (�10 – 102)

Table 3. Geometric parameters used in defining U and W, computed
assuming the first-order kinetics (with a ¼ qmax/cmat and f (C ) ¼ C).
L was reported previously in [9]. See appendix F for more details.

specimen 1 2 3 4

L, mm 8.2 11.4 15.4 17.9

Acap, mm2 0.125 0.0830 0.124 0.122

V, mm3 0.0016 0.0014 0.0021 0.0021

‘DL, mm 0.0056 0.0042 0.0050 0.0040

‘, mm 0.0185 0.0128 0.0146 0.0181

V=(L‘2) 0.57 0.75 0.64 0.36
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the nonlinearity in the Michaelis–Menten approximation

should be most apparent; and c50� cmat (yellow symbols),

when we expect to recover the first-order kinetics. Although

there is uncertainty in the value of c50 (table 1), the case c50/

cmat ¼ 0.02 (red symbols in figure 4a) lies within the range of

physiological values of metabolizing tissues (table 1). As the

inset shows, the variation in c50 across four orders of magni-

tude (spanning a transition from predominantly zeroth-order

to predominantly first-order kinetics) reveals only modest

variation in net oxygen delivery to fetal blood, affecting no

more than 12% change at an intermediate drop of DP ¼
10 Pa. This is in contrast to the solute flux metabolized by

the villous tissue (solid lines, matching colours), for which

the increase of c50/cmat from 0.02 to 100 leads to a decrease

in the metabolized flux by two orders of magnitude.

We thus conclude that oxygen delivery to fetal blood in

physiological conditions is not strongly affected by variation

in c50. Correspondingly, for a physiologically relevant oxygen

metabolism rate a � 1021 s21 [24], we estimate the

non-dimensional transport parameters (1.3) W � 10�2 and

U � 10�1 (tables 1 and 3), placing oxygen transport in the

weak metabolism regime.

Figure 4b shows how the partitioning of fluxes between vil-

lous tissue and fetal blood depends on the flow regime. The

ratio of fluxes Ntissue/Ntotal is defined as the amount of solute

metabolized by the villous tissue divided by the total flux

that enters into the terminal villous from the maternal circula-

tion through the villous surface (see appendix A, equation (A

16)). In the flow-limited regime (with very low values of DP),

almost all of the solute entering the terminal villus is
metabolized by the villous tissue. Conversely, in the diffu-

sion-limited regime (with high values of DP), a small fraction

of total flux is metabolized, and a larger fraction of the solute

enters the fetal capillary. This highlights how the flux is parti-

tioned differently depending on the flow regime. For a

physiological range of terminal pressure drops of �10–

100 Pa, the model predicts relative oxygen consumption by

terminal villous tissue of approximately 30–60% of the total

oxygen supply, which is comparable to the upper range of

22–54% reported as the relative oxygen consumption rate by

the human placenta ex vivo and in vivo [12,13].

In summary, parameter estimates from measurements of

dynamic oxygen uptake rate in placental tissue and our com-

putational model together suggest that the rate at which

oxygen is metabolized by a terminal villus is substantially

smaller than the maximum (diffusion-limited) transfer rate

of the villus, and also sufficiently small for oxygen to pene-

trate throughout the villous tissue. However under strongly

flow-limited conditions, our model predicts that villous

tissue can absorb a substantial proportion of the oxygen

supplied from the maternal circulation.
4. Discussion
Computational models of physiological function are

important both in developing fundamental scientific under-

standing and in advancing medical therapies. Like many

organs, the placenta has a complex multi-scale organization

that challenges current methodologies. We present here a

set of results for terminal villi, the primary functional

exchange units of the fetal circulation, in which we use

three-dimensional simulations to derive simplified

expressions of solute transport that can be readily integrated

within larger scale models of solute transport. Despite high

variability among the four samples of a terminal villus

investigated, we have shown that a handful of geometric

statistics are sufficient to characterize transport of solutes

that are taken up by the villous tissue itself. It is hoped that

these results will guide future studies of microvascular

anatomy so that function can be assessed more readily from

three-dimensional structural datasets.

Our strategy in the present study has been to explore a

broad range of parameters, to illustrate possible outcomes

for a variety of solutes (table 1), before focusing attention

on oxygen. One benefit of this approach is that the
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simplifications emerging for extreme parameter values shed

light on underlying physical mechanisms, which then help

us understand the more complex interactions that emerge

under physiological conditions.

In formulating approximations of solute exchange, we have

sought to use dimensionless quantities that naturally character-

ize dominant physical balances. In the absence of solute uptake

in tissue, we showed previously [5,7,9] that the Damköhler

number (1.1) is useful in distinguishing flow-limited from dif-

fusion-limited transport (with the transition between the two

cases occurring when Da is of order unity). Additional par-

ameters emerge when solute metabolism is accounted for.

When solute uptake (assuming first-order kinetics) is suffi-

ciently strong to induce solute boundary layers within villous

tissue, the relevant uptake parameter is U (see (1.3)), as illus-

trated in figure 3. For more moderate uptake (a limit of

relevance to oxygen), however, a further parameterW emerges,

as shown in appendix F. Distinct geometric quantities appear in

each parameter, reflecting the differing physical balances: L in

Da measures a mean exchange area over exchange distance, as

is appropriate to diffusion-limited transport; the total area of

the capillary endothelium Acap in U is relevant to transport

under flow-limited conditions when fetal blood is exposed to

a varying concentration field over this surface; and the lengths-

cale ‘ appears in W, reflecting uptake of solute throughout the

bulk of the tissue. Our study demonstrates how solutions of

simple canonical partial differential equations (here, the

three-dimensional Laplace and Poisson equations) in complex

spatial domains can be used to extract these functionally

significant geometric measures from imaging data.

Our linear and nonlinear uptake models allow insight

into how the transport of different solutes is affected by

metabolism. A key finding of the linear uptake model for a

generic solute is that sufficiently strong uptake can drive

solute exchange towards the flow-limited regime (figure 3).

This may be relevant for certain sugars: our estimate of U
for fructose (in excess of unity, table 1) suggests that metab-

olism can have a strong impact on its exchange. To test the

effect of metabolism on oxygen transport, we implemented

a nonlinear Michaelis–Menten uptake model and parame-

trized it with physiological literature values from different

metabolizing tissues, including our own experiments on

placental tissue using an oxygen probe (appendix C, figure

6). Our simulations predict that oxygen transport to fetal

blood is only modestly affected by metabolism (figure 4a).

This implies that, for physiological values, zero-uptake pre-

dictions (such as [9]) provide viable leading-order estimates

of oxygen delivery to the fetus, allowing us to determine

the impact of oxygen uptake by tissue as linear corrections

(see (F 3) and (F 5)). Nevertheless, the metabolic flux is

much larger than the flux delivered to fetal blood at low

fetal flow rates (more precisely, when Da�1
& W � 1; see

appendix F), and vice versa at high flow rates (figure 4b).

The present model rests on numerous assumptions. We

demonstrated previously [9] that non-Newtonian effects of

fetal blood flow can be neglected in a first approximation,

although numerous features of oxygen transport by red

blood cells and dynamic haematocrit distribution in complex

networks require further assessment [32]. Clearly, there will

be value in performing additional studies in a wider

sample of villous networks, in order to test the robustness

of the present approximations and to consider the impact of

structural and metabolic abnormalities that may arise in
disease. Future studies should also address the maternal

flow exterior to the surface of the villus, to test the assump-

tion that the source of solute is uniformly distributed and

to identify appropriate lengthscales that determine transport

(see also [33,34]). Given that there is spatial heterogeneity

across the whole placenta, the kinetics may switch from

zeroth order to first order in different locations within the

same organ. Active transport of some solutes by the syncytio-

trophoblast is a further refinement that will be required to

make robust predictions of placental function. Prior studies

of transport in other physiological systems [35–38] suggest

that there is value in using mixed (Robin) boundary con-

ditions on Gcap to explore states between the extremes

considered in appendices B and D. Finally, our study con-

siders uptake only in the terminal branches of a villus, and

does not account for solute metabolism by other placental

tissues, which will influence overall delivery to the fetus.

In summary, this study offers an integrated approach to

characterize the transport of solutes, such as oxygen, that

are metabolized by tissue with complex embedded microvas-

culature. A robust algebraic relationship (3.2) provides a

computationally efficient tool to upscale micro-structural

features to the organ-scale function of the human placenta;

this approach should be adaptable to other physiological

systems with complex vasculature. Although our realistic

image-based model offers a general insight into relative con-

tributions of villous tissue metabolism, diffusive capacity and

feto-capillary flow, more data are needed to further quantify

the identified transport determinants in healthy and

abnormal placentas.
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Appendix A. The computational model
We model fetal blood flow within a fetal capillary network

using the Stokes equations, which are solved over the

domain Vb occupied by blood vessels:

hr2u ¼ rp, r � u ¼ 0, x [ Vb: (A 1)

Here x is a spatial coordinate, u(x) is the fluid velocity field,

p(x) the fluid pressure and h the dynamic viscosity of fetal

blood, which is treated as Newtonian in our three-

http://doi.org/10.6084/m9.figshare.7718462
http://doi.org/10.6084/m9.figshare.7718462
http://doi.org/10.6084/m9.figshare.7718462
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Figure 5. Computational domain of specimen 1, and boundary surfaces G.
(a) The domain occupied by blood vessels Vb is bounded by the inlet and
outlet surfaces Gin and Gout (red) and the capillary surface Gcap (yellow).
(b) The domain occupied by villous tissue Vt is bounded by the capillary
surface Gcap, the no-flux surface G0 and the villous surface Gvil (blue).
(Online version in colour.)
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dimensional simulations. We take h ¼ 2� 10�3 Pa � s (table

1), which is appropriate for blood with 48% haematocrit in

a 20 mm vessel [9]. The capillary domain Vb is bounded by

the inlet surface Gin, the outlet surface Gout and the capillary

surface Gcap (figure 5a). The tissue domain Vt is bounded

internally by the capillary surface Gcap and externally by

the no-flux surface G0 and the villous surface Gvil (figure

5b). Blood enters through the inlet surface Gin and leaves

via Gout, driven by a pressure difference DP imposed between

inlet and outlet. A no-slip condition is imposed on the

interior of Gcap. The boundary conditions on the flow are

therefore

p ¼ DP on Gin, (A 2)

p ¼ 0 on Gout (A 3)

and u ¼ 0 on Gcap: (A 4)

The volume flux is defined as

Q ¼
ðð

Gout

n � u dA, (A 5)

and the resistance of the network is

R ¼ DP
Q
: (A 6)

Within Vb, the solute concentration c(x) is assumed to obey

the linear advection–diffusion equation

Bu � rc ¼ Dpr2c, x [ Vb, (A 7)

where Dp is the solute diffusion coefficient in plasma. The

parameter B ¼ 1 for most solutes, but B . 1 for species that

bind to haemoglobin, modelling facilitated transport by red

blood cells. For oxygen in fetal blood, B � 141 [5,33]. Fetal

blood is assumed to enter solute-free at the inlet Gin and

zero diffusive solute flux is imposed at the outlet Gout,

c ¼ 0 on Gin (A 8)

and n � rc ¼ 0 on Gout: (A 9)

The capillaries are surrounded by villous tissue, which

occupies the domain Vt. Here the solute concentration is

assumed to obey a diffusion–uptake equation

Dtr2c ¼ q(c) and x [ Vt, (A 10)

where Dt is the solute diffusion coefficient in tissue and q(c) is

the solute uptake rate, which is taken either to satisfy first-

order kinetics for a generic solute, q(c) ¼ ac (§3.1 of the

Results), or to obey the nonlinear Michaelis–Menten
relationship (2.2) for oxygen (§3.2). Here a is a rate of meta-

bolic uptake; a ¼ 0 reproduces the case discussed in [9].

The maternal solute concentration c ¼ cmat is imposed on

Gvil and no solute flux is imposed at the intermediate region

G0 on the villous surface to avoid artificial sharp gradients

(we assume that the geometric domain was sliced across G0

from the larger network of a villous tree). Thus

n � rc ¼ 0 on G0 (A 11)

and

c ¼ cmat on Gvil: (A 12)

We couple the problems in Vb and Vt by imposing continuity

of the concentration across Gcap as well as matching the

diffusive fluxes

Dp n � rc ¼ Dt n � rc on Gcap: (A 13)

Once a solution c to (A 1)–(A 13) has been obtained, we com-

pute the net solute flux delivered to the fetus, defined as the

integral of the advective flux over the outlet boundary

N ¼
ðð

Gout

B c n � u dA: (A 14)

Given (A 8) and (A 11), N is equal to the sum of diffusive

fluxes across the inlet and capillary surface,

N ¼
ðð

Gcap

n � rc dA�
ðð

Gin

n � rc dA: (A 15)

The proportion of the solute flux metabolized by the villous

tissue relative to the total flux supplied by the maternal

blood to the villous surface is given by

Ntissue

Ntotal
¼

ÐÐÐ
Vt

q(c) dVÐÐ
Gvil

n � rc dA
: (A 16)
Appendix B. Asymptotic transport regimes under
first-order kinetics
The computation of N requires the numerical solution of a

complex boundary value problem (A 1)–(A 13) over multiple

domains, Vb and Vt. In order to simplify the problem and

gain physical understanding, we consider the simpler

asymptotic regimes of extreme diffusion- and flow-limited

transport, in which the computation can be restricted to Vt.

Concentration profiles in each regime are shown in figure 1a,

and are determined as follows.

In extreme diffusion-limited transport, the flow is suffi-

ciently rapid to impose a fixed concentration difference

Dc ¼ cmat between the villous boundary Gvil and the capillary

boundary Gcap. Assuming linear kinetics for a generic solute,

we define the diffusion-limited boundary value problem as

Dtr2c ¼ ac on Vt,
c ¼ 0 on Gcap,
c ¼ cmat on Gvil

and n � rc ¼ 0 on G0:

9>>=
>>;

(B 1)
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Figure 6. Oxygen metabolism kinetics in the human placenta ex vivo. (a) Tissue oxygen partial pressure decay after the cessation of flow in two dually perfused
placentas; inset shows the dual perfusion set-up, with maternal (m) and fetal ( f ) cannulas and the optical sensor probe ( p). (b) Fitted (equation (C 1), solid) versus
measured (circles) oxygen metabolic rates. See Methods and appendix C for more details. (Online version in colour.)
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The net solute flux to fetal blood can be evaluated as

NDL ¼ Dt

ðð
Gcap

n � rc dA: (B 2)

This is a function of the uptake rate a as well as the domain

shape. In the case a ¼ 0, we retrieve the maximum exchange

capacity Nmax ; NDLja¼0 from [9]. The lengthscale L associ-

ated with a villus is defined as L ¼ Nmax=(Dtcmat).

Extreme flow-limited transport arises when DP is suffi-

ciently weak for solute to be fully saturated in fetal blood

before it leaves the vessel network. In this case, N is

proportional to the (weak) flow rate through the outlet. The

flow-limited problem differs from (B 1) by the boundary

condition on the capillary surface, which we approximate

by assuming that the flux to the vessel is negligible to

leading order

Dtr2c ¼ ac on Vt

n � rc ¼ 0 on Gcap, G0

and c ¼ cmat on Gvil:

9=
; (B 3)

Within the capillary, the concentration profile is almost

equilibrated, and swept away by weak flow at the outlet.

We model solute mixing by advection and diffusion within

the capillary by assuming that the advective flux at

the outlet (A 14) is determined by a surface average of the

concentration obtained as a solution to (B 3)

NFL � B Q hci and hci ¼ 1

Acap

ðð
Gcap

c dA, (B 4)

where kcl is the mean concentration over the capillary surface

Gcap and Q is the volume flux (A 5).
Appendix C. Ex vivo oxygen metabolism in the
human placenta
We estimate local oxygen metabolism parameters, assuming

Michaelis–Menten kinetics [18,19] for the concentration �c
measured by the optical sensor, volume-averaged over a

region of size approximately 50 mm in the intervillous

space. Provided the diffusion time scale across the measured

volume is smaller than the tissue metabolic time scale (tables
1 and 2), the local response to a cessation of flow is assumed

to satisfy

� d�c=dt ¼ ft �qmax

�c
�c50 þ �c

, (C 1)

where �qmax and �c50 are volume-averaged effective kinetic

parameters and ft is the villous volume fraction.

We use nonlinear least-squares fitting via the Levenberg–

Marquardt algorithm implemented in the nlinfit function of

MathWorks MATLABw R2018a to estimate the parameter

values of (C 1) from experimental data (figure 6).The fitted

values of the volume-averaged parameter ft�qmax (mean +
s.e.) are 2.77+0.11 mmHg s21 (subject 1) and 2.8+
0.3 mmHg s21 (subject 2), and the values for �c50 vary from

9.3+1.6 mmHg to 78+16 mmHg. Assuming ft � 0.5 [34]

and oxygen solubility of �1.35 � 1023 mol . m23 . mmHg21

[30], we obtain qmax � 1022 mol . s21 . m23 and c50 �
10–102 mmHg (or, �1022–1021 mol m23); see table 2 for a

comparison of placental oxygen metabolism with other

tissues.

We emphasize that the reported values are from just

two placentas and further studies are necessary to assess

inter- and intra-placental variability.
Appendix D. Metabolic scale functions under
first-order kinetics
Extending the framework of appendix B, we can recast the dif-

fusion-limited flux (B 2) and the flow-limited flux (B 4) into a

more convenient form by introducing the dimensionless

metabolic scale functions 0 , F(a) � 1 and 0 , G(a) � 1,

satisfying

NDL ¼ NmaxF(a) (D 1)

and

NFL ¼ Nmax Da�1G(a): (D 2)

These functions satisfy F(0) ¼ 1 and G(0) ¼ 1, retrieving the

no-metabolism forms of flow-limited and diffusion-limited

flux from [9]. The diffusion-limited metabolic scale function

F(a) is defined in terms of an integral over the concentration
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Figure 7. Metabolic scale functions computed for specimen 3. By definition,
F ¼ 1 and G ¼ 1 for the case of no metabolism, a ¼ 0. The points result
from finite-element calculations and the lines connecting the points are
meant as visual guides. (Online version in colour.)
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c, which is the solution to the Helmholtz problem (B 1)

F(a) ¼ 1

cmatL

ðð
Gcap

n � rc dA: (D 3)

The flow-limited metabolic scale function G(a) is derived from

the solution to the Helmholtz problem (B 3) as

G(a) ¼ 1

cmat Acap

ðð
Gcap

c dA: (D 4)

These functions are illustrated in figure 7, for one villus

(specimen 3). Each function becomes exponentially small as

the uptake parameter increases, because Gcap falls outside

the concentration boundary layer adjacent to Gvil. The depen-

dence of F and G on villous geometry is explored further

below.

To explain why G falls off more rapidly than F for large a,

consider that when uptake is strong the c field is confined to a

boundary layer of thickness
ffiffiffiffiffiffiffiffiffiffiffi
Dt=a

p
; 1=u adjacent to Gvil, so

that F and G will be dominated by localized regions (hot-

spots) in which Gcap is closest to Gvil. Suppose that in such

a region the distance between the two surfaces can be rep-

resented by a paraboloid with mean radius of curvature R;

then the region over which any uptake takes place is confined

to distances
ffiffiffiffiffiffiffiffi
R=u

p
of the point of closest approach of the two

surfaces, i.e. an area of size R/u. F, being an area integral

(D 3) of n � rc where c varies over a lengthscale 1/u, will

be proportional to u(R=u)=L ¼ R=L; G, being an area integral

(D 4) of c, will be proportional to (R/u)/Acap. As explained in

further detail in appendix E, their ratio F/G therefore scales

like uAcap=L ; U (see (1.3)) for U � 1, implying G� F in

this limit.
Appendix E. WKB approximation for strong
metabolism
We seek approximations of (B 1) and (B 3) under strong

uptake, assuming first-order kinetics. Let C ¼ c/cmat and

u2 ¼ a/Dt. We consider the limit in which the boundary-

layer thickness 1/u becomes smaller than the thickness of

the villous tissue. We pose a WKB expansion,

C ¼ exp (uS0 þ S1 þ S2=uþ . . . ). Then, at successive orders,

the diffusion–uptake equation gives

jrS0j2 ¼ 1 and 2rS0 � rS1 þr2S0 ¼ 0: (E 1)
We assume Gvil is parametrized by surface coordinates

s ; (s1, s2) and a local normal coordinate n, oriented into

the villous tissue. Let n̂(s) be the local unit normal and

k(s) ¼ rs � n̂ the curvature, where rs ; (I � n̂	 n̂) � r.

The eikonal equation (E 1a) is solved by S0 ¼+n, where n
measures distance along n̂. The transport equation (E1b)

becomes 2n̂ � rS1 þ k ¼ 0, implying that S1 ¼ � 1
2 knþ A(s)

for some constant A. Thus, the leading-order expression for

C can be written

C ¼ Aþ exp (nu� 1

2
knþ . . . )þ A� exp (� nu� 1

2
knþ . . . ):

(E 2)

The boundary layer thickness 1/u must be significantly

smaller than the wall radius of curvature 1/k for this

approximation to be valid. Imposing C ¼ 1 on Gvil implies

Aþ þ A2 ¼ 1. Ignoring complications arising from caustics,

we assume Gcap lies at n(s) ¼ N(s). The boundary condition

on this surface determines A+. Let m̂(s) denote the unit

normal to Gcap, pointing into the capillary.

Imposing C ¼ 0 on Gcap in the diffusion-limited case

implies

C ¼ exp (� nu� (1=2)kn)

1� exp (� 2Nu)
� exp (nu� (1=2)kn)

exp (2Nu)� 1
, (E 3)

and so

F � 1

L

ð
Gcap

2 m̂ � n̂ ue�Nu�kN=2 dA: (E 4)

Imposing Cn ¼ 0 on Gcap in the flow-limited case implies

C ¼ exp (nu� (1=2)kn)

1þ exp (2Nu)
� exp (� nu� (1=2)kn)

1þ exp (� 2Nu)
, (E 5)

and so

G � 1

Acap

ð
Gcap

2e�Nu�kN=2 dA: (E 6)

We can estimate the integrals in (E 4) and (E 6) by noting that

the exponential will be dominated by the local minima of N. Let

such a point be at s ¼ s0, at whichrsN ¼ 0. The present analysis

addresses the case in which N(s0)� 1/u. Let l1 . 0, l2 . 0

be the eigenvalues of the Jacobian rs 	rsN(s0). The local

area element may be written as dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrsNj2

q
ds1 ds2,

so that near s0 we have dA � ds1 ds2. We can rotate the

coordinates locally so that the Jacobian is diagonal, and

then N � N(s0)þ 1
2 (l1(s� s0)2

1þl1(s� s0)2
2)þ. . .. Introducing

scaled coordinates ui ¼ (uli)
1/2 (s 2 s0)i for i ¼ 1, 2, we obtain

as a contribution to G

2e�N(s0)u

Acap

ð1

�1

ð1

�1

e�(1=2)(u2
1þu2

2)

u
ffiffiffiffiffiffiffiffiffiffi
l1l2

p du1du2

¼ 4pR(s0)

Acapu
e�N(s0)u: (E 7)

The factor R(s0) ; 1=
ffiffiffiffiffiffiffiffiffiffi
l1l2

p
is a lengthscale associated with the

mean radius of the ‘hotspot’ at s0. The prefactor in (E 7) is a

dimensionless ratio of this length multiplied by the bound-

ary-layer thickness 1/u to Acap, and is associated with the

assumption that the flow absorbs solute from Gcap by (effec-

tively) averaging over the capillary interface. The exponential

sensitivity to N(s0)u in (E 7) shows that proximity of Gvil to

Gcap is the predominant factor in determining overall exchange



royalsocietypublishing.org/journal/rsfs
Interface

Focus
9:20190021

12
under flow-limited conditions with strong uptake. We can

expect G to be dominated by contributions from a small

number of such hotspots within a villus, each with its own

value of N(s0) and R(s0).

The corresponding contribution to F will have

m̂ � n̂js0
� 1, giving

4pR(s0)

L e�N(s0)u: (E 8)

In this case, the net exchange capacity under diffusion-

limited conditions, proportional to LF, is determined instead

by the hotspot radius R(s0), becoming independent of the

global measure L.

In general, F and G will be determined by a sum of such

contributions from the dominant ‘hotspots’ in each case, but

with (from (E 7) and (E 8))

F
G
�

Acapu

L ;
Acap

ffiffiffiffiffiffiffiffiffiffiffi
a=Dt

p
L , (E 9)

for sufficiently large a. Thus we see the emergence of the

dimensionless parameter U in (1.3). The relationship (E 9) is

validated in figure 3.
Appendix F. Weak metabolism limit
The case of weak tissue metabolism arises when the total rate

of solute uptake by tissue, which we can estimate by qmaxV
where V is the volume of villous tissue in Vt, is smaller

than the maximum possible flux reaching fetal blood

Nmax ; DtcmatL. Equivalently we require qmax/(Dt cmat) to

be smaller than a quantity with dimensions of inverse area,

which we estimate provisionally as L=V but which we now

determine more precisely. We can decouple the diffusive

and uptake fluxes in (A 10) by expanding the solution of

r2C ¼ 1 f(C), 1 ;
qmax

Dtcmat
, C ;

c
cmat

, (F 1)

formally in powers of 1, subject to appropriate boundary

conditions, as C � C(0) þ 1 C(1) þ . . . . Here f (C ) is a non-

negative dimensionless metabolic function (equal to 1 for

zeroth-order, C for first-order, or C/(C þ c50/cmat) for

Michaelis–Menten kinetics). While C(0) is dimensionless,

C(1) has dimensions of length squared in this formulation

and is expected to be negative, reflecting the reduction of

the solute field by delivery to tissue.

In diffusion-limited conditions with CjGcap
¼ 0 and

CjGvil
¼ 1, we have, at leading order, r2C(0) ¼ 0, C(0)jGcap

¼ 0

and C(0)jGvil
¼ 1, and thus the flux to fetal blood is

N(0)
DL ;

Ð
Gcap

n � rC(0) dA ¼ L. The following order gives

r2C(1) ¼ f(C(0)), C(1)jGcap
¼ C(1)jGvil

¼ 0. The reduction to the

flux to fetal blood due to solute uptake in tissue reveals the
effective area, which we write as the square of a lengthscale

‘DL,

‘2
DL ¼ �

1

L

ð
Gcap

n � rC(1) dA, (F 2)

which can be computed numerically for a given villous geo-

metry (table 3). In dimensional variables, the approximate

total flux becomes

NDL � Dt cmat L� qmax L ‘2
DL, (F 3)

or equivalently (using (D 1)) F � 1� 1‘2
DL for 1‘2

DL � 1.

In the flow-limited case, n � rCjGcap
¼ 0 and CjGvil

¼ 1. Thus,

at successive orders, (F 1) gives C(0) ; 1, N(0)
FL ; (1=Acap)

Ð
Gcap

C(0) dA ¼ 1 and r2C(1) ¼ f(C(0)), n � rC(1)jGcap
¼ C(1)jGvil

¼ 0.

In this case, the flux delivered to fetal blood yields the effective

area

‘2 ¼ � 1

Acap

ð
Gcap

C(1) dA: (F 4)

The total uptake flux (in dimensional variables) is approximated

by

NFL � B Q cmat 1� qmax

Dtcmat
‘2

� �
, (F 5)

or equivalently (using (D 2)) G� 1 2 1‘2. The extreme

flow-limited assumption requires that NFL is substantially smal-

ler than the flux entering villous tissue, which balances the

overall rate of uptake Vqmax.

The limiting cases (F 3) and (F 5) provide an approximate

ratio

F
G
� 1þW 1� ‘

2
DL

‘2

� �
and W ;

qmax

Dt cmat
‘2: (F 6)

As table 3 illustrates, ‘2
DL=‘

2 for specimens 1–4 in all cases is

less than 12%, indicating that uptake has a stronger relative

effect on the flow-limited compared with the diffusion-lim-

ited state. Thus, to a good approximation, we can describe

the boundary between flow-limited and diffusion-limited

uptake using Da�1 � 1þW when uptake is weak (see inset

to figure 3), highlighting W ¼ a‘2=Dt as a significant

dimensionless measure of uptake.

The condition NFL � Vqmax underpinning the flow-

limited approximation can be expressed for first-order

kinetics, using (F 5), as Da�1 � (V=L‘2)W. The geometric

index V=L‘2 is an order unity parameter for all specimens

(table 3). The condition Da�1 � W � 1 therefore provides

an estimate of the conditions at which the flux partition

ratio in figure 4b first falls appreciably below unity.
References
1. Burton GJ, Fowden AL. 2015 The placenta:
a multifaceted, transient organ. Phil.
Trans. R. Soc. B 370, 20140066. (doi:10.
1098/rstb.2014.0066)

2. Horikoshi M et al. 2016 Genome-wide associations
for birth weight and correlations with adult disease.
Nature 538, 248 – 252. (doi:10.1038/nature19806)
3. Roth CJ, Haeussner E, Ruebelmann T, Koch FV,
Schmitz C, Frank H-G, Wall WA. 2017
Dynamic modeling of uteroplacental blood
flow in IUGR indicates vortices and
elevated pressure in the intervillous space – a
pilot study. Sci. Rep. 7, 40771. (doi:10.1038/
srep40771)
4. Perazzolo S, Lewis R, Sengers B. 2017 Modelling the
effect of intervillous flow on solute transfer based
on 3D imaging of the human placental
microstructure. Placenta 60, 21 – 27. (doi:10.1016/j.
placenta.2017.10.003)

5. Pearce P, Brownbill P, Janácek J, Jirkovská M,
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